This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | foov | |- ( F : ( A X. B ) -onto-> C <-> ( F : ( A X. B ) --> C /\ A. z e. C E. x e. A E. y e. B z = ( x F y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo3 | |- ( F : ( A X. B ) -onto-> C <-> ( F : ( A X. B ) --> C /\ A. z e. C E. w e. ( A X. B ) z = ( F ` w ) ) ) |
|
| 2 | fveq2 | |- ( w = <. x , y >. -> ( F ` w ) = ( F ` <. x , y >. ) ) |
|
| 3 | df-ov | |- ( x F y ) = ( F ` <. x , y >. ) |
|
| 4 | 2 3 | eqtr4di | |- ( w = <. x , y >. -> ( F ` w ) = ( x F y ) ) |
| 5 | 4 | eqeq2d | |- ( w = <. x , y >. -> ( z = ( F ` w ) <-> z = ( x F y ) ) ) |
| 6 | 5 | rexxp | |- ( E. w e. ( A X. B ) z = ( F ` w ) <-> E. x e. A E. y e. B z = ( x F y ) ) |
| 7 | 6 | ralbii | |- ( A. z e. C E. w e. ( A X. B ) z = ( F ` w ) <-> A. z e. C E. x e. A E. y e. B z = ( x F y ) ) |
| 8 | 7 | anbi2i | |- ( ( F : ( A X. B ) --> C /\ A. z e. C E. w e. ( A X. B ) z = ( F ` w ) ) <-> ( F : ( A X. B ) --> C /\ A. z e. C E. x e. A E. y e. B z = ( x F y ) ) ) |
| 9 | 1 8 | bitri | |- ( F : ( A X. B ) -onto-> C <-> ( F : ( A X. B ) --> C /\ A. z e. C E. x e. A E. y e. B z = ( x F y ) ) ) |