This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of ordinal multiplication. Proposition 8.19 of TakeutiZaring p. 63. Theorem 3.16 of Schloeder p. 9. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omord | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ (/) e. C ) <-> ( C .o A ) e. ( C .o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omord2 | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) |
|
| 2 | 1 | ex | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A e. B <-> ( C .o A ) e. ( C .o B ) ) ) ) |
| 3 | 2 | pm5.32rd | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ (/) e. C ) <-> ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) ) ) |
| 4 | simpl | |- ( ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) -> ( C .o A ) e. ( C .o B ) ) |
|
| 5 | ne0i | |- ( ( C .o A ) e. ( C .o B ) -> ( C .o B ) =/= (/) ) |
|
| 6 | om0r | |- ( B e. On -> ( (/) .o B ) = (/) ) |
|
| 7 | oveq1 | |- ( C = (/) -> ( C .o B ) = ( (/) .o B ) ) |
|
| 8 | 7 | eqeq1d | |- ( C = (/) -> ( ( C .o B ) = (/) <-> ( (/) .o B ) = (/) ) ) |
| 9 | 6 8 | syl5ibrcom | |- ( B e. On -> ( C = (/) -> ( C .o B ) = (/) ) ) |
| 10 | 9 | necon3d | |- ( B e. On -> ( ( C .o B ) =/= (/) -> C =/= (/) ) ) |
| 11 | 5 10 | syl5 | |- ( B e. On -> ( ( C .o A ) e. ( C .o B ) -> C =/= (/) ) ) |
| 12 | 11 | adantr | |- ( ( B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> C =/= (/) ) ) |
| 13 | on0eln0 | |- ( C e. On -> ( (/) e. C <-> C =/= (/) ) ) |
|
| 14 | 13 | adantl | |- ( ( B e. On /\ C e. On ) -> ( (/) e. C <-> C =/= (/) ) ) |
| 15 | 12 14 | sylibrd | |- ( ( B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> (/) e. C ) ) |
| 16 | 15 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> (/) e. C ) ) |
| 17 | 16 | ancld | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( C .o A ) e. ( C .o B ) -> ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) ) ) |
| 18 | 4 17 | impbid2 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( ( C .o A ) e. ( C .o B ) /\ (/) e. C ) <-> ( C .o A ) e. ( C .o B ) ) ) |
| 19 | 3 18 | bitrd | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A e. B /\ (/) e. C ) <-> ( C .o A ) e. ( C .o B ) ) ) |