This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal multiplication with zero. Proposition 8.18(1) of TakeutiZaring p. 63. (Contributed by NM, 3-Aug-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | om0r | |- ( A e. On -> ( (/) .o A ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( (/) .o x ) = ( (/) .o (/) ) ) |
|
| 2 | 1 | eqeq1d | |- ( x = (/) -> ( ( (/) .o x ) = (/) <-> ( (/) .o (/) ) = (/) ) ) |
| 3 | oveq2 | |- ( x = y -> ( (/) .o x ) = ( (/) .o y ) ) |
|
| 4 | 3 | eqeq1d | |- ( x = y -> ( ( (/) .o x ) = (/) <-> ( (/) .o y ) = (/) ) ) |
| 5 | oveq2 | |- ( x = suc y -> ( (/) .o x ) = ( (/) .o suc y ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = suc y -> ( ( (/) .o x ) = (/) <-> ( (/) .o suc y ) = (/) ) ) |
| 7 | oveq2 | |- ( x = A -> ( (/) .o x ) = ( (/) .o A ) ) |
|
| 8 | 7 | eqeq1d | |- ( x = A -> ( ( (/) .o x ) = (/) <-> ( (/) .o A ) = (/) ) ) |
| 9 | 0elon | |- (/) e. On |
|
| 10 | om0 | |- ( (/) e. On -> ( (/) .o (/) ) = (/) ) |
|
| 11 | 9 10 | ax-mp | |- ( (/) .o (/) ) = (/) |
| 12 | oveq1 | |- ( ( (/) .o y ) = (/) -> ( ( (/) .o y ) +o (/) ) = ( (/) +o (/) ) ) |
|
| 13 | omsuc | |- ( ( (/) e. On /\ y e. On ) -> ( (/) .o suc y ) = ( ( (/) .o y ) +o (/) ) ) |
|
| 14 | 9 13 | mpan | |- ( y e. On -> ( (/) .o suc y ) = ( ( (/) .o y ) +o (/) ) ) |
| 15 | oa0 | |- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
|
| 16 | 9 15 | ax-mp | |- ( (/) +o (/) ) = (/) |
| 17 | 16 | eqcomi | |- (/) = ( (/) +o (/) ) |
| 18 | 17 | a1i | |- ( y e. On -> (/) = ( (/) +o (/) ) ) |
| 19 | 14 18 | eqeq12d | |- ( y e. On -> ( ( (/) .o suc y ) = (/) <-> ( ( (/) .o y ) +o (/) ) = ( (/) +o (/) ) ) ) |
| 20 | 12 19 | imbitrrid | |- ( y e. On -> ( ( (/) .o y ) = (/) -> ( (/) .o suc y ) = (/) ) ) |
| 21 | iuneq2 | |- ( A. y e. x ( (/) .o y ) = (/) -> U_ y e. x ( (/) .o y ) = U_ y e. x (/) ) |
|
| 22 | iun0 | |- U_ y e. x (/) = (/) |
|
| 23 | 21 22 | eqtrdi | |- ( A. y e. x ( (/) .o y ) = (/) -> U_ y e. x ( (/) .o y ) = (/) ) |
| 24 | vex | |- x e. _V |
|
| 25 | omlim | |- ( ( (/) e. On /\ ( x e. _V /\ Lim x ) ) -> ( (/) .o x ) = U_ y e. x ( (/) .o y ) ) |
|
| 26 | 9 25 | mpan | |- ( ( x e. _V /\ Lim x ) -> ( (/) .o x ) = U_ y e. x ( (/) .o y ) ) |
| 27 | 24 26 | mpan | |- ( Lim x -> ( (/) .o x ) = U_ y e. x ( (/) .o y ) ) |
| 28 | 27 | eqeq1d | |- ( Lim x -> ( ( (/) .o x ) = (/) <-> U_ y e. x ( (/) .o y ) = (/) ) ) |
| 29 | 23 28 | imbitrrid | |- ( Lim x -> ( A. y e. x ( (/) .o y ) = (/) -> ( (/) .o x ) = (/) ) ) |
| 30 | 2 4 6 8 11 20 29 | tfinds | |- ( A e. On -> ( (/) .o A ) = (/) ) |