This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for ordinal multiplication. Proposition 8.20 of TakeutiZaring p. 63 and its converse. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omcan | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( ( A .o B ) = ( A .o C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omordi | |- ( ( ( C e. On /\ A e. On ) /\ (/) e. A ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) |
|
| 2 | 1 | ex | |- ( ( C e. On /\ A e. On ) -> ( (/) e. A -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) ) |
| 3 | 2 | ancoms | |- ( ( A e. On /\ C e. On ) -> ( (/) e. A -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) ) |
| 4 | 3 | 3adant2 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. A -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) ) |
| 5 | 4 | imp | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( B e. C -> ( A .o B ) e. ( A .o C ) ) ) |
| 6 | omordi | |- ( ( ( B e. On /\ A e. On ) /\ (/) e. A ) -> ( C e. B -> ( A .o C ) e. ( A .o B ) ) ) |
|
| 7 | 6 | ex | |- ( ( B e. On /\ A e. On ) -> ( (/) e. A -> ( C e. B -> ( A .o C ) e. ( A .o B ) ) ) ) |
| 8 | 7 | ancoms | |- ( ( A e. On /\ B e. On ) -> ( (/) e. A -> ( C e. B -> ( A .o C ) e. ( A .o B ) ) ) ) |
| 9 | 8 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. A -> ( C e. B -> ( A .o C ) e. ( A .o B ) ) ) ) |
| 10 | 9 | imp | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( C e. B -> ( A .o C ) e. ( A .o B ) ) ) |
| 11 | 5 10 | orim12d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( ( B e. C \/ C e. B ) -> ( ( A .o B ) e. ( A .o C ) \/ ( A .o C ) e. ( A .o B ) ) ) ) |
| 12 | 11 | con3d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( -. ( ( A .o B ) e. ( A .o C ) \/ ( A .o C ) e. ( A .o B ) ) -> -. ( B e. C \/ C e. B ) ) ) |
| 13 | omcl | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On ) |
|
| 14 | eloni | |- ( ( A .o B ) e. On -> Ord ( A .o B ) ) |
|
| 15 | 13 14 | syl | |- ( ( A e. On /\ B e. On ) -> Ord ( A .o B ) ) |
| 16 | omcl | |- ( ( A e. On /\ C e. On ) -> ( A .o C ) e. On ) |
|
| 17 | eloni | |- ( ( A .o C ) e. On -> Ord ( A .o C ) ) |
|
| 18 | 16 17 | syl | |- ( ( A e. On /\ C e. On ) -> Ord ( A .o C ) ) |
| 19 | ordtri3 | |- ( ( Ord ( A .o B ) /\ Ord ( A .o C ) ) -> ( ( A .o B ) = ( A .o C ) <-> -. ( ( A .o B ) e. ( A .o C ) \/ ( A .o C ) e. ( A .o B ) ) ) ) |
|
| 20 | 15 18 19 | syl2an | |- ( ( ( A e. On /\ B e. On ) /\ ( A e. On /\ C e. On ) ) -> ( ( A .o B ) = ( A .o C ) <-> -. ( ( A .o B ) e. ( A .o C ) \/ ( A .o C ) e. ( A .o B ) ) ) ) |
| 21 | 20 | 3impdi | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( A .o B ) = ( A .o C ) <-> -. ( ( A .o B ) e. ( A .o C ) \/ ( A .o C ) e. ( A .o B ) ) ) ) |
| 22 | 21 | adantr | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( ( A .o B ) = ( A .o C ) <-> -. ( ( A .o B ) e. ( A .o C ) \/ ( A .o C ) e. ( A .o B ) ) ) ) |
| 23 | eloni | |- ( B e. On -> Ord B ) |
|
| 24 | eloni | |- ( C e. On -> Ord C ) |
|
| 25 | ordtri3 | |- ( ( Ord B /\ Ord C ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
|
| 26 | 23 24 25 | syl2an | |- ( ( B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
| 27 | 26 | 3adant1 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
| 28 | 27 | adantr | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( B = C <-> -. ( B e. C \/ C e. B ) ) ) |
| 29 | 12 22 28 | 3imtr4d | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( ( A .o B ) = ( A .o C ) -> B = C ) ) |
| 30 | oveq2 | |- ( B = C -> ( A .o B ) = ( A .o C ) ) |
|
| 31 | 29 30 | impbid1 | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. A ) -> ( ( A .o B ) = ( A .o C ) <-> B = C ) ) |