This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Adding to both sides of an inequality in _om . (Contributed by Scott Fenton, 16-Apr-2012) (Revised by Mario Carneiro, 12-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnawordi | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( A +o x ) = ( A +o (/) ) ) |
|
| 2 | oveq2 | |- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
|
| 3 | 1 2 | sseq12d | |- ( x = (/) -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o (/) ) C_ ( B +o (/) ) ) ) |
| 4 | 3 | imbi2d | |- ( x = (/) -> ( ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) <-> ( A C_ B -> ( A +o (/) ) C_ ( B +o (/) ) ) ) ) |
| 5 | 4 | imbi2d | |- ( x = (/) -> ( ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) ) <-> ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o (/) ) C_ ( B +o (/) ) ) ) ) ) |
| 6 | oveq2 | |- ( x = y -> ( A +o x ) = ( A +o y ) ) |
|
| 7 | oveq2 | |- ( x = y -> ( B +o x ) = ( B +o y ) ) |
|
| 8 | 6 7 | sseq12d | |- ( x = y -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o y ) C_ ( B +o y ) ) ) |
| 9 | 8 | imbi2d | |- ( x = y -> ( ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) <-> ( A C_ B -> ( A +o y ) C_ ( B +o y ) ) ) ) |
| 10 | 9 | imbi2d | |- ( x = y -> ( ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) ) <-> ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o y ) C_ ( B +o y ) ) ) ) ) |
| 11 | oveq2 | |- ( x = suc y -> ( A +o x ) = ( A +o suc y ) ) |
|
| 12 | oveq2 | |- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
|
| 13 | 11 12 | sseq12d | |- ( x = suc y -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 14 | 13 | imbi2d | |- ( x = suc y -> ( ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) <-> ( A C_ B -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) |
| 15 | 14 | imbi2d | |- ( x = suc y -> ( ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) ) <-> ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) ) |
| 16 | oveq2 | |- ( x = C -> ( A +o x ) = ( A +o C ) ) |
|
| 17 | oveq2 | |- ( x = C -> ( B +o x ) = ( B +o C ) ) |
|
| 18 | 16 17 | sseq12d | |- ( x = C -> ( ( A +o x ) C_ ( B +o x ) <-> ( A +o C ) C_ ( B +o C ) ) ) |
| 19 | 18 | imbi2d | |- ( x = C -> ( ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) <-> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) ) |
| 20 | 19 | imbi2d | |- ( x = C -> ( ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o x ) C_ ( B +o x ) ) ) <-> ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) ) ) |
| 21 | nnon | |- ( A e. _om -> A e. On ) |
|
| 22 | nnon | |- ( B e. _om -> B e. On ) |
|
| 23 | oa0 | |- ( A e. On -> ( A +o (/) ) = A ) |
|
| 24 | 23 | adantr | |- ( ( A e. On /\ B e. On ) -> ( A +o (/) ) = A ) |
| 25 | oa0 | |- ( B e. On -> ( B +o (/) ) = B ) |
|
| 26 | 25 | adantl | |- ( ( A e. On /\ B e. On ) -> ( B +o (/) ) = B ) |
| 27 | 24 26 | sseq12d | |- ( ( A e. On /\ B e. On ) -> ( ( A +o (/) ) C_ ( B +o (/) ) <-> A C_ B ) ) |
| 28 | 27 | biimprd | |- ( ( A e. On /\ B e. On ) -> ( A C_ B -> ( A +o (/) ) C_ ( B +o (/) ) ) ) |
| 29 | 21 22 28 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o (/) ) C_ ( B +o (/) ) ) ) |
| 30 | nnacl | |- ( ( A e. _om /\ y e. _om ) -> ( A +o y ) e. _om ) |
|
| 31 | 30 | ancoms | |- ( ( y e. _om /\ A e. _om ) -> ( A +o y ) e. _om ) |
| 32 | 31 | adantrr | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( A +o y ) e. _om ) |
| 33 | nnon | |- ( ( A +o y ) e. _om -> ( A +o y ) e. On ) |
|
| 34 | eloni | |- ( ( A +o y ) e. On -> Ord ( A +o y ) ) |
|
| 35 | 32 33 34 | 3syl | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> Ord ( A +o y ) ) |
| 36 | nnacl | |- ( ( B e. _om /\ y e. _om ) -> ( B +o y ) e. _om ) |
|
| 37 | 36 | ancoms | |- ( ( y e. _om /\ B e. _om ) -> ( B +o y ) e. _om ) |
| 38 | 37 | adantrl | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( B +o y ) e. _om ) |
| 39 | nnon | |- ( ( B +o y ) e. _om -> ( B +o y ) e. On ) |
|
| 40 | eloni | |- ( ( B +o y ) e. On -> Ord ( B +o y ) ) |
|
| 41 | 38 39 40 | 3syl | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> Ord ( B +o y ) ) |
| 42 | ordsucsssuc | |- ( ( Ord ( A +o y ) /\ Ord ( B +o y ) ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
|
| 43 | 35 41 42 | syl2anc | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( ( A +o y ) C_ ( B +o y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 44 | 43 | biimpa | |- ( ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) /\ ( A +o y ) C_ ( B +o y ) ) -> suc ( A +o y ) C_ suc ( B +o y ) ) |
| 45 | nnasuc | |- ( ( A e. _om /\ y e. _om ) -> ( A +o suc y ) = suc ( A +o y ) ) |
|
| 46 | 45 | ancoms | |- ( ( y e. _om /\ A e. _om ) -> ( A +o suc y ) = suc ( A +o y ) ) |
| 47 | 46 | adantrr | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( A +o suc y ) = suc ( A +o y ) ) |
| 48 | nnasuc | |- ( ( B e. _om /\ y e. _om ) -> ( B +o suc y ) = suc ( B +o y ) ) |
|
| 49 | 48 | ancoms | |- ( ( y e. _om /\ B e. _om ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 50 | 49 | adantrl | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( B +o suc y ) = suc ( B +o y ) ) |
| 51 | 47 50 | sseq12d | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( ( A +o suc y ) C_ ( B +o suc y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 52 | 51 | adantr | |- ( ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) /\ ( A +o y ) C_ ( B +o y ) ) -> ( ( A +o suc y ) C_ ( B +o suc y ) <-> suc ( A +o y ) C_ suc ( B +o y ) ) ) |
| 53 | 44 52 | mpbird | |- ( ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) /\ ( A +o y ) C_ ( B +o y ) ) -> ( A +o suc y ) C_ ( B +o suc y ) ) |
| 54 | 53 | ex | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( ( A +o y ) C_ ( B +o y ) -> ( A +o suc y ) C_ ( B +o suc y ) ) ) |
| 55 | 54 | imim2d | |- ( ( y e. _om /\ ( A e. _om /\ B e. _om ) ) -> ( ( A C_ B -> ( A +o y ) C_ ( B +o y ) ) -> ( A C_ B -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) |
| 56 | 55 | ex | |- ( y e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( A C_ B -> ( A +o y ) C_ ( B +o y ) ) -> ( A C_ B -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) ) |
| 57 | 56 | a2d | |- ( y e. _om -> ( ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o y ) C_ ( B +o y ) ) ) -> ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o suc y ) C_ ( B +o suc y ) ) ) ) ) |
| 58 | 5 10 15 20 29 57 | finds | |- ( C e. _om -> ( ( A e. _om /\ B e. _om ) -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) ) |
| 59 | 58 | com12 | |- ( ( A e. _om /\ B e. _om ) -> ( C e. _om -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) ) |
| 60 | 59 | 3impia | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B -> ( A +o C ) C_ ( B +o C ) ) ) |