This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of natural numbers is associative. Theorem 4K(1) of Enderton p. 81. (Contributed by NM, 20-Sep-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaass | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = C -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o C ) ) |
|
| 2 | oveq2 | |- ( x = C -> ( B +o x ) = ( B +o C ) ) |
|
| 3 | 2 | oveq2d | |- ( x = C -> ( A +o ( B +o x ) ) = ( A +o ( B +o C ) ) ) |
| 4 | 1 3 | eqeq12d | |- ( x = C -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 5 | 4 | imbi2d | |- ( x = C -> ( ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) <-> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) ) |
| 6 | oveq2 | |- ( x = (/) -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o (/) ) ) |
|
| 7 | oveq2 | |- ( x = (/) -> ( B +o x ) = ( B +o (/) ) ) |
|
| 8 | 7 | oveq2d | |- ( x = (/) -> ( A +o ( B +o x ) ) = ( A +o ( B +o (/) ) ) ) |
| 9 | 6 8 | eqeq12d | |- ( x = (/) -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) ) |
| 10 | oveq2 | |- ( x = y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o y ) ) |
|
| 11 | oveq2 | |- ( x = y -> ( B +o x ) = ( B +o y ) ) |
|
| 12 | 11 | oveq2d | |- ( x = y -> ( A +o ( B +o x ) ) = ( A +o ( B +o y ) ) ) |
| 13 | 10 12 | eqeq12d | |- ( x = y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) ) ) |
| 14 | oveq2 | |- ( x = suc y -> ( ( A +o B ) +o x ) = ( ( A +o B ) +o suc y ) ) |
|
| 15 | oveq2 | |- ( x = suc y -> ( B +o x ) = ( B +o suc y ) ) |
|
| 16 | 15 | oveq2d | |- ( x = suc y -> ( A +o ( B +o x ) ) = ( A +o ( B +o suc y ) ) ) |
| 17 | 14 16 | eqeq12d | |- ( x = suc y -> ( ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) <-> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 18 | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
|
| 19 | nna0 | |- ( ( A +o B ) e. _om -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
|
| 20 | 18 19 | syl | |- ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o (/) ) = ( A +o B ) ) |
| 21 | nna0 | |- ( B e. _om -> ( B +o (/) ) = B ) |
|
| 22 | 21 | oveq2d | |- ( B e. _om -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 23 | 22 | adantl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o ( B +o (/) ) ) = ( A +o B ) ) |
| 24 | 20 23 | eqtr4d | |- ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o (/) ) = ( A +o ( B +o (/) ) ) ) |
| 25 | suceq | |- ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) |
|
| 26 | nnasuc | |- ( ( ( A +o B ) e. _om /\ y e. _om ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
|
| 27 | 18 26 | sylan | |- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( A +o B ) +o suc y ) = suc ( ( A +o B ) +o y ) ) |
| 28 | nnasuc | |- ( ( B e. _om /\ y e. _om ) -> ( B +o suc y ) = suc ( B +o y ) ) |
|
| 29 | 28 | oveq2d | |- ( ( B e. _om /\ y e. _om ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 30 | 29 | adantl | |- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o ( B +o suc y ) ) = ( A +o suc ( B +o y ) ) ) |
| 31 | nnacl | |- ( ( B e. _om /\ y e. _om ) -> ( B +o y ) e. _om ) |
|
| 32 | nnasuc | |- ( ( A e. _om /\ ( B +o y ) e. _om ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
|
| 33 | 31 32 | sylan2 | |- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o suc ( B +o y ) ) = suc ( A +o ( B +o y ) ) ) |
| 34 | 30 33 | eqtrd | |- ( ( A e. _om /\ ( B e. _om /\ y e. _om ) ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 35 | 34 | anassrs | |- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( A +o ( B +o suc y ) ) = suc ( A +o ( B +o y ) ) ) |
| 36 | 27 35 | eqeq12d | |- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) <-> suc ( ( A +o B ) +o y ) = suc ( A +o ( B +o y ) ) ) ) |
| 37 | 25 36 | imbitrrid | |- ( ( ( A e. _om /\ B e. _om ) /\ y e. _om ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) |
| 38 | 37 | expcom | |- ( y e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( ( A +o B ) +o y ) = ( A +o ( B +o y ) ) -> ( ( A +o B ) +o suc y ) = ( A +o ( B +o suc y ) ) ) ) ) |
| 39 | 9 13 17 24 38 | finds2 | |- ( x e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o x ) = ( A +o ( B +o x ) ) ) ) |
| 40 | 5 39 | vtoclga | |- ( C e. _om -> ( ( A e. _om /\ B e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 41 | 40 | com12 | |- ( ( A e. _om /\ B e. _om ) -> ( C e. _om -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) ) |
| 42 | 41 | 3impia | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A +o B ) +o C ) = ( A +o ( B +o C ) ) ) |