This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal multiplication. Proposition 8.21 of TakeutiZaring p. 63, limited to natural numbers. (Contributed by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmwordri | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B -> ( A .o C ) C_ ( B .o C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnmwordi | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B -> ( C .o A ) C_ ( C .o B ) ) ) |
|
| 2 | nnmcom | |- ( ( A e. _om /\ C e. _om ) -> ( A .o C ) = ( C .o A ) ) |
|
| 3 | 2 | 3adant2 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A .o C ) = ( C .o A ) ) |
| 4 | nnmcom | |- ( ( B e. _om /\ C e. _om ) -> ( B .o C ) = ( C .o B ) ) |
|
| 5 | 4 | 3adant1 | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( B .o C ) = ( C .o B ) ) |
| 6 | 3 5 | sseq12d | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( ( A .o C ) C_ ( B .o C ) <-> ( C .o A ) C_ ( C .o B ) ) ) |
| 7 | 1 6 | sylibrd | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) -> ( A C_ B -> ( A .o C ) C_ ( B .o C ) ) ) |