This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of Enderton p. 81. (Contributed by NM, 21-Sep-1995) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmcom | |- ( ( A e. _om /\ B e. _om ) -> ( A .o B ) = ( B .o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = A -> ( x .o B ) = ( A .o B ) ) |
|
| 2 | oveq2 | |- ( x = A -> ( B .o x ) = ( B .o A ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( x = A -> ( ( x .o B ) = ( B .o x ) <-> ( A .o B ) = ( B .o A ) ) ) |
| 4 | 3 | imbi2d | |- ( x = A -> ( ( B e. _om -> ( x .o B ) = ( B .o x ) ) <-> ( B e. _om -> ( A .o B ) = ( B .o A ) ) ) ) |
| 5 | oveq1 | |- ( x = (/) -> ( x .o B ) = ( (/) .o B ) ) |
|
| 6 | oveq2 | |- ( x = (/) -> ( B .o x ) = ( B .o (/) ) ) |
|
| 7 | 5 6 | eqeq12d | |- ( x = (/) -> ( ( x .o B ) = ( B .o x ) <-> ( (/) .o B ) = ( B .o (/) ) ) ) |
| 8 | oveq1 | |- ( x = y -> ( x .o B ) = ( y .o B ) ) |
|
| 9 | oveq2 | |- ( x = y -> ( B .o x ) = ( B .o y ) ) |
|
| 10 | 8 9 | eqeq12d | |- ( x = y -> ( ( x .o B ) = ( B .o x ) <-> ( y .o B ) = ( B .o y ) ) ) |
| 11 | oveq1 | |- ( x = suc y -> ( x .o B ) = ( suc y .o B ) ) |
|
| 12 | oveq2 | |- ( x = suc y -> ( B .o x ) = ( B .o suc y ) ) |
|
| 13 | 11 12 | eqeq12d | |- ( x = suc y -> ( ( x .o B ) = ( B .o x ) <-> ( suc y .o B ) = ( B .o suc y ) ) ) |
| 14 | nnm0r | |- ( B e. _om -> ( (/) .o B ) = (/) ) |
|
| 15 | nnm0 | |- ( B e. _om -> ( B .o (/) ) = (/) ) |
|
| 16 | 14 15 | eqtr4d | |- ( B e. _om -> ( (/) .o B ) = ( B .o (/) ) ) |
| 17 | oveq1 | |- ( ( y .o B ) = ( B .o y ) -> ( ( y .o B ) +o B ) = ( ( B .o y ) +o B ) ) |
|
| 18 | nnmsucr | |- ( ( y e. _om /\ B e. _om ) -> ( suc y .o B ) = ( ( y .o B ) +o B ) ) |
|
| 19 | nnmsuc | |- ( ( B e. _om /\ y e. _om ) -> ( B .o suc y ) = ( ( B .o y ) +o B ) ) |
|
| 20 | 19 | ancoms | |- ( ( y e. _om /\ B e. _om ) -> ( B .o suc y ) = ( ( B .o y ) +o B ) ) |
| 21 | 18 20 | eqeq12d | |- ( ( y e. _om /\ B e. _om ) -> ( ( suc y .o B ) = ( B .o suc y ) <-> ( ( y .o B ) +o B ) = ( ( B .o y ) +o B ) ) ) |
| 22 | 17 21 | imbitrrid | |- ( ( y e. _om /\ B e. _om ) -> ( ( y .o B ) = ( B .o y ) -> ( suc y .o B ) = ( B .o suc y ) ) ) |
| 23 | 22 | ex | |- ( y e. _om -> ( B e. _om -> ( ( y .o B ) = ( B .o y ) -> ( suc y .o B ) = ( B .o suc y ) ) ) ) |
| 24 | 7 10 13 16 23 | finds2 | |- ( x e. _om -> ( B e. _om -> ( x .o B ) = ( B .o x ) ) ) |
| 25 | 4 24 | vtoclga | |- ( A e. _om -> ( B e. _om -> ( A .o B ) = ( B .o A ) ) ) |
| 26 | 25 | imp | |- ( ( A e. _om /\ B e. _om ) -> ( A .o B ) = ( B .o A ) ) |