This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a commutative left ordered monoid, the ordering is compatible with monoid addition. Double addition version. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndadd.0 | |- B = ( Base ` M ) |
|
| omndadd.1 | |- .<_ = ( le ` M ) |
||
| omndadd.2 | |- .+ = ( +g ` M ) |
||
| omndadd2d.m | |- ( ph -> M e. oMnd ) |
||
| omndadd2d.w | |- ( ph -> W e. B ) |
||
| omndadd2d.x | |- ( ph -> X e. B ) |
||
| omndadd2d.y | |- ( ph -> Y e. B ) |
||
| omndadd2d.z | |- ( ph -> Z e. B ) |
||
| omndadd2d.1 | |- ( ph -> X .<_ Z ) |
||
| omndadd2d.2 | |- ( ph -> Y .<_ W ) |
||
| omndadd2d.c | |- ( ph -> M e. CMnd ) |
||
| Assertion | omndadd2d | |- ( ph -> ( X .+ Y ) .<_ ( Z .+ W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd.0 | |- B = ( Base ` M ) |
|
| 2 | omndadd.1 | |- .<_ = ( le ` M ) |
|
| 3 | omndadd.2 | |- .+ = ( +g ` M ) |
|
| 4 | omndadd2d.m | |- ( ph -> M e. oMnd ) |
|
| 5 | omndadd2d.w | |- ( ph -> W e. B ) |
|
| 6 | omndadd2d.x | |- ( ph -> X e. B ) |
|
| 7 | omndadd2d.y | |- ( ph -> Y e. B ) |
|
| 8 | omndadd2d.z | |- ( ph -> Z e. B ) |
|
| 9 | omndadd2d.1 | |- ( ph -> X .<_ Z ) |
|
| 10 | omndadd2d.2 | |- ( ph -> Y .<_ W ) |
|
| 11 | omndadd2d.c | |- ( ph -> M e. CMnd ) |
|
| 12 | omndtos | |- ( M e. oMnd -> M e. Toset ) |
|
| 13 | tospos | |- ( M e. Toset -> M e. Poset ) |
|
| 14 | 4 12 13 | 3syl | |- ( ph -> M e. Poset ) |
| 15 | omndmnd | |- ( M e. oMnd -> M e. Mnd ) |
|
| 16 | 4 15 | syl | |- ( ph -> M e. Mnd ) |
| 17 | 1 3 | mndcl | |- ( ( M e. Mnd /\ X e. B /\ Y e. B ) -> ( X .+ Y ) e. B ) |
| 18 | 16 6 7 17 | syl3anc | |- ( ph -> ( X .+ Y ) e. B ) |
| 19 | 1 3 | mndcl | |- ( ( M e. Mnd /\ Z e. B /\ Y e. B ) -> ( Z .+ Y ) e. B ) |
| 20 | 16 8 7 19 | syl3anc | |- ( ph -> ( Z .+ Y ) e. B ) |
| 21 | 1 3 | mndcl | |- ( ( M e. Mnd /\ Z e. B /\ W e. B ) -> ( Z .+ W ) e. B ) |
| 22 | 16 8 5 21 | syl3anc | |- ( ph -> ( Z .+ W ) e. B ) |
| 23 | 18 20 22 | 3jca | |- ( ph -> ( ( X .+ Y ) e. B /\ ( Z .+ Y ) e. B /\ ( Z .+ W ) e. B ) ) |
| 24 | 1 2 3 | omndadd | |- ( ( M e. oMnd /\ ( X e. B /\ Z e. B /\ Y e. B ) /\ X .<_ Z ) -> ( X .+ Y ) .<_ ( Z .+ Y ) ) |
| 25 | 4 6 8 7 9 24 | syl131anc | |- ( ph -> ( X .+ Y ) .<_ ( Z .+ Y ) ) |
| 26 | 1 2 3 | omndadd | |- ( ( M e. oMnd /\ ( Y e. B /\ W e. B /\ Z e. B ) /\ Y .<_ W ) -> ( Y .+ Z ) .<_ ( W .+ Z ) ) |
| 27 | 4 7 5 8 10 26 | syl131anc | |- ( ph -> ( Y .+ Z ) .<_ ( W .+ Z ) ) |
| 28 | 1 3 | cmncom | |- ( ( M e. CMnd /\ Y e. B /\ Z e. B ) -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 29 | 11 7 8 28 | syl3anc | |- ( ph -> ( Y .+ Z ) = ( Z .+ Y ) ) |
| 30 | 1 3 | cmncom | |- ( ( M e. CMnd /\ W e. B /\ Z e. B ) -> ( W .+ Z ) = ( Z .+ W ) ) |
| 31 | 11 5 8 30 | syl3anc | |- ( ph -> ( W .+ Z ) = ( Z .+ W ) ) |
| 32 | 27 29 31 | 3brtr3d | |- ( ph -> ( Z .+ Y ) .<_ ( Z .+ W ) ) |
| 33 | 1 2 | postr | |- ( ( M e. Poset /\ ( ( X .+ Y ) e. B /\ ( Z .+ Y ) e. B /\ ( Z .+ W ) e. B ) ) -> ( ( ( X .+ Y ) .<_ ( Z .+ Y ) /\ ( Z .+ Y ) .<_ ( Z .+ W ) ) -> ( X .+ Y ) .<_ ( Z .+ W ) ) ) |
| 34 | 33 | imp | |- ( ( ( M e. Poset /\ ( ( X .+ Y ) e. B /\ ( Z .+ Y ) e. B /\ ( Z .+ W ) e. B ) ) /\ ( ( X .+ Y ) .<_ ( Z .+ Y ) /\ ( Z .+ Y ) .<_ ( Z .+ W ) ) ) -> ( X .+ Y ) .<_ ( Z .+ W ) ) |
| 35 | 14 23 25 32 34 | syl22anc | |- ( ph -> ( X .+ Y ) .<_ ( Z .+ W ) ) |