This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace inference form of orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omlsi.1 | |- A e. CH |
|
| omlsi.2 | |- B e. SH |
||
| omlsi.3 | |- A C_ B |
||
| omlsi.4 | |- ( B i^i ( _|_ ` A ) ) = 0H |
||
| Assertion | omlsii | |- A = B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omlsi.1 | |- A e. CH |
|
| 2 | omlsi.2 | |- B e. SH |
|
| 3 | omlsi.3 | |- A C_ B |
|
| 4 | omlsi.4 | |- ( B i^i ( _|_ ` A ) ) = 0H |
|
| 5 | 2 | sheli | |- ( x e. B -> x e. ~H ) |
| 6 | 1 5 | pjhthlem2 | |- ( x e. B -> E. y e. A E. z e. ( _|_ ` A ) x = ( y +h z ) ) |
| 7 | eqeq1 | |- ( x = if ( x e. B , x , 0h ) -> ( x = ( y +h z ) <-> if ( x e. B , x , 0h ) = ( y +h z ) ) ) |
|
| 8 | eleq1 | |- ( x = if ( x e. B , x , 0h ) -> ( x e. A <-> if ( x e. B , x , 0h ) e. A ) ) |
|
| 9 | 7 8 | imbi12d | |- ( x = if ( x e. B , x , 0h ) -> ( ( x = ( y +h z ) -> x e. A ) <-> ( if ( x e. B , x , 0h ) = ( y +h z ) -> if ( x e. B , x , 0h ) e. A ) ) ) |
| 10 | oveq1 | |- ( y = if ( y e. A , y , 0h ) -> ( y +h z ) = ( if ( y e. A , y , 0h ) +h z ) ) |
|
| 11 | 10 | eqeq2d | |- ( y = if ( y e. A , y , 0h ) -> ( if ( x e. B , x , 0h ) = ( y +h z ) <-> if ( x e. B , x , 0h ) = ( if ( y e. A , y , 0h ) +h z ) ) ) |
| 12 | 11 | imbi1d | |- ( y = if ( y e. A , y , 0h ) -> ( ( if ( x e. B , x , 0h ) = ( y +h z ) -> if ( x e. B , x , 0h ) e. A ) <-> ( if ( x e. B , x , 0h ) = ( if ( y e. A , y , 0h ) +h z ) -> if ( x e. B , x , 0h ) e. A ) ) ) |
| 13 | oveq2 | |- ( z = if ( z e. ( _|_ ` A ) , z , 0h ) -> ( if ( y e. A , y , 0h ) +h z ) = ( if ( y e. A , y , 0h ) +h if ( z e. ( _|_ ` A ) , z , 0h ) ) ) |
|
| 14 | 13 | eqeq2d | |- ( z = if ( z e. ( _|_ ` A ) , z , 0h ) -> ( if ( x e. B , x , 0h ) = ( if ( y e. A , y , 0h ) +h z ) <-> if ( x e. B , x , 0h ) = ( if ( y e. A , y , 0h ) +h if ( z e. ( _|_ ` A ) , z , 0h ) ) ) ) |
| 15 | 14 | imbi1d | |- ( z = if ( z e. ( _|_ ` A ) , z , 0h ) -> ( ( if ( x e. B , x , 0h ) = ( if ( y e. A , y , 0h ) +h z ) -> if ( x e. B , x , 0h ) e. A ) <-> ( if ( x e. B , x , 0h ) = ( if ( y e. A , y , 0h ) +h if ( z e. ( _|_ ` A ) , z , 0h ) ) -> if ( x e. B , x , 0h ) e. A ) ) ) |
| 16 | 1 | chshii | |- A e. SH |
| 17 | sh0 | |- ( B e. SH -> 0h e. B ) |
|
| 18 | 2 17 | ax-mp | |- 0h e. B |
| 19 | 18 | elimel | |- if ( x e. B , x , 0h ) e. B |
| 20 | ch0 | |- ( A e. CH -> 0h e. A ) |
|
| 21 | 1 20 | ax-mp | |- 0h e. A |
| 22 | 21 | elimel | |- if ( y e. A , y , 0h ) e. A |
| 23 | shocsh | |- ( A e. SH -> ( _|_ ` A ) e. SH ) |
|
| 24 | 16 23 | ax-mp | |- ( _|_ ` A ) e. SH |
| 25 | sh0 | |- ( ( _|_ ` A ) e. SH -> 0h e. ( _|_ ` A ) ) |
|
| 26 | 24 25 | ax-mp | |- 0h e. ( _|_ ` A ) |
| 27 | 26 | elimel | |- if ( z e. ( _|_ ` A ) , z , 0h ) e. ( _|_ ` A ) |
| 28 | 16 2 3 4 19 22 27 | omlsilem | |- ( if ( x e. B , x , 0h ) = ( if ( y e. A , y , 0h ) +h if ( z e. ( _|_ ` A ) , z , 0h ) ) -> if ( x e. B , x , 0h ) e. A ) |
| 29 | 9 12 15 28 | dedth3h | |- ( ( x e. B /\ y e. A /\ z e. ( _|_ ` A ) ) -> ( x = ( y +h z ) -> x e. A ) ) |
| 30 | 29 | 3expia | |- ( ( x e. B /\ y e. A ) -> ( z e. ( _|_ ` A ) -> ( x = ( y +h z ) -> x e. A ) ) ) |
| 31 | 30 | rexlimdv | |- ( ( x e. B /\ y e. A ) -> ( E. z e. ( _|_ ` A ) x = ( y +h z ) -> x e. A ) ) |
| 32 | 31 | rexlimdva | |- ( x e. B -> ( E. y e. A E. z e. ( _|_ ` A ) x = ( y +h z ) -> x e. A ) ) |
| 33 | 6 32 | mpd | |- ( x e. B -> x e. A ) |
| 34 | 33 | ssriv | |- B C_ A |
| 35 | 3 34 | eqssi | |- A = B |