This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between vector subtraction and addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | |- A e. ~H |
|
| hvnegdi.2 | |- B e. ~H |
||
| hvaddcan.3 | |- C e. ~H |
||
| Assertion | hvsubaddi | |- ( ( A -h B ) = C <-> ( B +h C ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | |- A e. ~H |
|
| 2 | hvnegdi.2 | |- B e. ~H |
|
| 3 | hvaddcan.3 | |- C e. ~H |
|
| 4 | 1 2 | hvsubvali | |- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 5 | 4 | eqeq1i | |- ( ( A -h B ) = C <-> ( A +h ( -u 1 .h B ) ) = C ) |
| 6 | neg1cn | |- -u 1 e. CC |
|
| 7 | 6 2 | hvmulcli | |- ( -u 1 .h B ) e. ~H |
| 8 | 2 1 7 | hvadd12i | |- ( B +h ( A +h ( -u 1 .h B ) ) ) = ( A +h ( B +h ( -u 1 .h B ) ) ) |
| 9 | 2 | hvnegidi | |- ( B +h ( -u 1 .h B ) ) = 0h |
| 10 | 9 | oveq2i | |- ( A +h ( B +h ( -u 1 .h B ) ) ) = ( A +h 0h ) |
| 11 | ax-hvaddid | |- ( A e. ~H -> ( A +h 0h ) = A ) |
|
| 12 | 1 11 | ax-mp | |- ( A +h 0h ) = A |
| 13 | 8 10 12 | 3eqtri | |- ( B +h ( A +h ( -u 1 .h B ) ) ) = A |
| 14 | 13 | eqeq1i | |- ( ( B +h ( A +h ( -u 1 .h B ) ) ) = ( B +h C ) <-> A = ( B +h C ) ) |
| 15 | 1 7 | hvaddcli | |- ( A +h ( -u 1 .h B ) ) e. ~H |
| 16 | 2 15 3 | hvaddcani | |- ( ( B +h ( A +h ( -u 1 .h B ) ) ) = ( B +h C ) <-> ( A +h ( -u 1 .h B ) ) = C ) |
| 17 | eqcom | |- ( A = ( B +h C ) <-> ( B +h C ) = A ) |
|
| 18 | 14 16 17 | 3bitr3i | |- ( ( A +h ( -u 1 .h B ) ) = C <-> ( B +h C ) = A ) |
| 19 | 5 18 | bitri | |- ( ( A -h B ) = C <-> ( B +h C ) = A ) |