This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Eliminate a hypothesis containing 2 class variables. (Contributed by NM, 14-Aug-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elimhyp2v.1 | |- ( A = if ( ph , A , C ) -> ( ph <-> ch ) ) |
|
| elimhyp2v.2 | |- ( B = if ( ph , B , D ) -> ( ch <-> th ) ) |
||
| elimhyp2v.3 | |- ( C = if ( ph , A , C ) -> ( ta <-> et ) ) |
||
| elimhyp2v.4 | |- ( D = if ( ph , B , D ) -> ( et <-> th ) ) |
||
| elimhyp2v.5 | |- ta |
||
| Assertion | elimhyp2v | |- th |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimhyp2v.1 | |- ( A = if ( ph , A , C ) -> ( ph <-> ch ) ) |
|
| 2 | elimhyp2v.2 | |- ( B = if ( ph , B , D ) -> ( ch <-> th ) ) |
|
| 3 | elimhyp2v.3 | |- ( C = if ( ph , A , C ) -> ( ta <-> et ) ) |
|
| 4 | elimhyp2v.4 | |- ( D = if ( ph , B , D ) -> ( et <-> th ) ) |
|
| 5 | elimhyp2v.5 | |- ta |
|
| 6 | iftrue | |- ( ph -> if ( ph , A , C ) = A ) |
|
| 7 | 6 | eqcomd | |- ( ph -> A = if ( ph , A , C ) ) |
| 8 | 7 1 | syl | |- ( ph -> ( ph <-> ch ) ) |
| 9 | iftrue | |- ( ph -> if ( ph , B , D ) = B ) |
|
| 10 | 9 | eqcomd | |- ( ph -> B = if ( ph , B , D ) ) |
| 11 | 10 2 | syl | |- ( ph -> ( ch <-> th ) ) |
| 12 | 8 11 | bitrd | |- ( ph -> ( ph <-> th ) ) |
| 13 | 12 | ibi | |- ( ph -> th ) |
| 14 | iffalse | |- ( -. ph -> if ( ph , A , C ) = C ) |
|
| 15 | 14 | eqcomd | |- ( -. ph -> C = if ( ph , A , C ) ) |
| 16 | 15 3 | syl | |- ( -. ph -> ( ta <-> et ) ) |
| 17 | iffalse | |- ( -. ph -> if ( ph , B , D ) = D ) |
|
| 18 | 17 | eqcomd | |- ( -. ph -> D = if ( ph , B , D ) ) |
| 19 | 18 4 | syl | |- ( -. ph -> ( et <-> th ) ) |
| 20 | 16 19 | bitrd | |- ( -. ph -> ( ta <-> th ) ) |
| 21 | 5 20 | mpbii | |- ( -. ph -> th ) |
| 22 | 13 21 | pm2.61i | |- th |