This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negative law for orthoposets. ( ococ analog.) (Contributed by NM, 13-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoccl.b | |- B = ( Base ` K ) |
|
| opoccl.o | |- ._|_ = ( oc ` K ) |
||
| Assertion | opococ | |- ( ( K e. OP /\ X e. B ) -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoccl.b | |- B = ( Base ` K ) |
|
| 2 | opoccl.o | |- ._|_ = ( oc ` K ) |
|
| 3 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 4 | eqid | |- ( join ` K ) = ( join ` K ) |
|
| 5 | eqid | |- ( meet ` K ) = ( meet ` K ) |
|
| 6 | eqid | |- ( 0. ` K ) = ( 0. ` K ) |
|
| 7 | eqid | |- ( 1. ` K ) = ( 1. ` K ) |
|
| 8 | 1 3 2 4 5 6 7 | oposlem | |- ( ( K e. OP /\ X e. B /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X ( join ` K ) ( ._|_ ` X ) ) = ( 1. ` K ) /\ ( X ( meet ` K ) ( ._|_ ` X ) ) = ( 0. ` K ) ) ) |
| 9 | 8 | 3anidm23 | |- ( ( K e. OP /\ X e. B ) -> ( ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) /\ ( X ( join ` K ) ( ._|_ ` X ) ) = ( 1. ` K ) /\ ( X ( meet ` K ) ( ._|_ ` X ) ) = ( 0. ` K ) ) ) |
| 10 | 9 | simp1d | |- ( ( K e. OP /\ X e. B ) -> ( ( ._|_ ` X ) e. B /\ ( ._|_ ` ( ._|_ ` X ) ) = X /\ ( X ( le ` K ) X -> ( ._|_ ` X ) ( le ` K ) ( ._|_ ` X ) ) ) ) |
| 11 | 10 | simp2d | |- ( ( K e. OP /\ X e. B ) -> ( ._|_ ` ( ._|_ ` X ) ) = X ) |