This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of an ortholattice element with one equals itself. (Contributed by NM, 22-May-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olm1.b | |- B = ( Base ` K ) |
|
| olm1.m | |- ./\ = ( meet ` K ) |
||
| olm1.u | |- .1. = ( 1. ` K ) |
||
| Assertion | olm12 | |- ( ( K e. OL /\ X e. B ) -> ( .1. ./\ X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olm1.b | |- B = ( Base ` K ) |
|
| 2 | olm1.m | |- ./\ = ( meet ` K ) |
|
| 3 | olm1.u | |- .1. = ( 1. ` K ) |
|
| 4 | ollat | |- ( K e. OL -> K e. Lat ) |
|
| 5 | 4 | adantr | |- ( ( K e. OL /\ X e. B ) -> K e. Lat ) |
| 6 | olop | |- ( K e. OL -> K e. OP ) |
|
| 7 | 6 | adantr | |- ( ( K e. OL /\ X e. B ) -> K e. OP ) |
| 8 | 1 3 | op1cl | |- ( K e. OP -> .1. e. B ) |
| 9 | 7 8 | syl | |- ( ( K e. OL /\ X e. B ) -> .1. e. B ) |
| 10 | simpr | |- ( ( K e. OL /\ X e. B ) -> X e. B ) |
|
| 11 | 1 2 | latmcom | |- ( ( K e. Lat /\ .1. e. B /\ X e. B ) -> ( .1. ./\ X ) = ( X ./\ .1. ) ) |
| 12 | 5 9 10 11 | syl3anc | |- ( ( K e. OL /\ X e. B ) -> ( .1. ./\ X ) = ( X ./\ .1. ) ) |
| 13 | 1 2 3 | olm11 | |- ( ( K e. OL /\ X e. B ) -> ( X ./\ .1. ) = X ) |
| 14 | 12 13 | eqtrd | |- ( ( K e. OL /\ X e. B ) -> ( .1. ./\ X ) = X ) |