This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthocomplement of orthoposet unity. (Contributed by NM, 24-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opoc1.z | |- .0. = ( 0. ` K ) |
|
| opoc1.u | |- .1. = ( 1. ` K ) |
||
| opoc1.o | |- ._|_ = ( oc ` K ) |
||
| Assertion | opoc1 | |- ( K e. OP -> ( ._|_ ` .1. ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opoc1.z | |- .0. = ( 0. ` K ) |
|
| 2 | opoc1.u | |- .1. = ( 1. ` K ) |
|
| 3 | opoc1.o | |- ._|_ = ( oc ` K ) |
|
| 4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 5 | 4 1 | op0cl | |- ( K e. OP -> .0. e. ( Base ` K ) ) |
| 6 | 4 3 | opoccl | |- ( ( K e. OP /\ .0. e. ( Base ` K ) ) -> ( ._|_ ` .0. ) e. ( Base ` K ) ) |
| 7 | 5 6 | mpdan | |- ( K e. OP -> ( ._|_ ` .0. ) e. ( Base ` K ) ) |
| 8 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 9 | 4 8 2 | ople1 | |- ( ( K e. OP /\ ( ._|_ ` .0. ) e. ( Base ` K ) ) -> ( ._|_ ` .0. ) ( le ` K ) .1. ) |
| 10 | 7 9 | mpdan | |- ( K e. OP -> ( ._|_ ` .0. ) ( le ` K ) .1. ) |
| 11 | 4 2 | op1cl | |- ( K e. OP -> .1. e. ( Base ` K ) ) |
| 12 | 4 8 3 | oplecon1b | |- ( ( K e. OP /\ .1. e. ( Base ` K ) /\ .0. e. ( Base ` K ) ) -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .0. ) ( le ` K ) .1. ) ) |
| 13 | 11 5 12 | mpd3an23 | |- ( K e. OP -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .0. ) ( le ` K ) .1. ) ) |
| 14 | 10 13 | mpbird | |- ( K e. OP -> ( ._|_ ` .1. ) ( le ` K ) .0. ) |
| 15 | 4 3 | opoccl | |- ( ( K e. OP /\ .1. e. ( Base ` K ) ) -> ( ._|_ ` .1. ) e. ( Base ` K ) ) |
| 16 | 11 15 | mpdan | |- ( K e. OP -> ( ._|_ ` .1. ) e. ( Base ` K ) ) |
| 17 | 4 8 1 | ople0 | |- ( ( K e. OP /\ ( ._|_ ` .1. ) e. ( Base ` K ) ) -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .1. ) = .0. ) ) |
| 18 | 16 17 | mpdan | |- ( K e. OP -> ( ( ._|_ ` .1. ) ( le ` K ) .0. <-> ( ._|_ ` .1. ) = .0. ) ) |
| 19 | 14 18 | mpbid | |- ( K e. OP -> ( ._|_ ` .1. ) = .0. ) |