This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice element joined with zero equals itself. ( chj0 analog.) (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | olj0.b | |- B = ( Base ` K ) |
|
| olj0.j | |- .\/ = ( join ` K ) |
||
| olj0.z | |- .0. = ( 0. ` K ) |
||
| Assertion | olj01 | |- ( ( K e. OL /\ X e. B ) -> ( X .\/ .0. ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olj0.b | |- B = ( Base ` K ) |
|
| 2 | olj0.j | |- .\/ = ( join ` K ) |
|
| 3 | olj0.z | |- .0. = ( 0. ` K ) |
|
| 4 | olop | |- ( K e. OL -> K e. OP ) |
|
| 5 | 1 3 | op0cl | |- ( K e. OP -> .0. e. B ) |
| 6 | 4 5 | syl | |- ( K e. OL -> .0. e. B ) |
| 7 | 6 | adantr | |- ( ( K e. OL /\ X e. B ) -> .0. e. B ) |
| 8 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 9 | ollat | |- ( K e. OL -> K e. Lat ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> K e. Lat ) |
| 11 | 1 2 | latjcl | |- ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) e. B ) |
| 12 | 9 11 | syl3an1 | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) e. B ) |
| 13 | simp2 | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> X e. B ) |
|
| 14 | 1 8 | latref | |- ( ( K e. Lat /\ X e. B ) -> X ( le ` K ) X ) |
| 15 | 9 14 | sylan | |- ( ( K e. OL /\ X e. B ) -> X ( le ` K ) X ) |
| 16 | 15 | 3adant3 | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> X ( le ` K ) X ) |
| 17 | 1 8 3 | op0le | |- ( ( K e. OP /\ X e. B ) -> .0. ( le ` K ) X ) |
| 18 | 4 17 | sylan | |- ( ( K e. OL /\ X e. B ) -> .0. ( le ` K ) X ) |
| 19 | 18 | 3adant3 | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> .0. ( le ` K ) X ) |
| 20 | simp3 | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> .0. e. B ) |
|
| 21 | 1 8 2 | latjle12 | |- ( ( K e. Lat /\ ( X e. B /\ .0. e. B /\ X e. B ) ) -> ( ( X ( le ` K ) X /\ .0. ( le ` K ) X ) <-> ( X .\/ .0. ) ( le ` K ) X ) ) |
| 22 | 10 13 20 13 21 | syl13anc | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( ( X ( le ` K ) X /\ .0. ( le ` K ) X ) <-> ( X .\/ .0. ) ( le ` K ) X ) ) |
| 23 | 16 19 22 | mpbi2and | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) ( le ` K ) X ) |
| 24 | 1 8 2 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ .0. e. B ) -> X ( le ` K ) ( X .\/ .0. ) ) |
| 25 | 9 24 | syl3an1 | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> X ( le ` K ) ( X .\/ .0. ) ) |
| 26 | 1 8 10 12 13 23 25 | latasymd | |- ( ( K e. OL /\ X e. B /\ .0. e. B ) -> ( X .\/ .0. ) = X ) |
| 27 | 7 26 | mpd3an3 | |- ( ( K e. OL /\ X e. B ) -> ( X .\/ .0. ) = X ) |