This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak ordering property of ordinal exponentiation. Lemma 3.19 of Schloeder p. 10. (Contributed by NM, 6-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oewordi | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | |- ( C e. On -> Ord C ) |
|
| 2 | ordgt0ge1 | |- ( Ord C -> ( (/) e. C <-> 1o C_ C ) ) |
|
| 3 | 1 2 | syl | |- ( C e. On -> ( (/) e. C <-> 1o C_ C ) ) |
| 4 | 1on | |- 1o e. On |
|
| 5 | onsseleq | |- ( ( 1o e. On /\ C e. On ) -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) |
|
| 6 | 4 5 | mpan | |- ( C e. On -> ( 1o C_ C <-> ( 1o e. C \/ 1o = C ) ) ) |
| 7 | 3 6 | bitrd | |- ( C e. On -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) |
| 8 | 7 | 3ad2ant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C <-> ( 1o e. C \/ 1o = C ) ) ) |
| 9 | ondif2 | |- ( C e. ( On \ 2o ) <-> ( C e. On /\ 1o e. C ) ) |
|
| 10 | oeword | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B <-> ( C ^o A ) C_ ( C ^o B ) ) ) |
|
| 11 | 10 | biimpd | |- ( ( A e. On /\ B e. On /\ C e. ( On \ 2o ) ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 12 | 11 | 3expia | |- ( ( A e. On /\ B e. On ) -> ( C e. ( On \ 2o ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 13 | 9 12 | biimtrrid | |- ( ( A e. On /\ B e. On ) -> ( ( C e. On /\ 1o e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 14 | 13 | expd | |- ( ( A e. On /\ B e. On ) -> ( C e. On -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) ) |
| 15 | 14 | 3impia | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 16 | oe1m | |- ( A e. On -> ( 1o ^o A ) = 1o ) |
|
| 17 | 16 | adantr | |- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = 1o ) |
| 18 | oe1m | |- ( B e. On -> ( 1o ^o B ) = 1o ) |
|
| 19 | 18 | adantl | |- ( ( A e. On /\ B e. On ) -> ( 1o ^o B ) = 1o ) |
| 20 | 17 19 | eqtr4d | |- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) = ( 1o ^o B ) ) |
| 21 | eqimss | |- ( ( 1o ^o A ) = ( 1o ^o B ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. On /\ B e. On ) -> ( 1o ^o A ) C_ ( 1o ^o B ) ) |
| 23 | oveq1 | |- ( 1o = C -> ( 1o ^o A ) = ( C ^o A ) ) |
|
| 24 | oveq1 | |- ( 1o = C -> ( 1o ^o B ) = ( C ^o B ) ) |
|
| 25 | 23 24 | sseq12d | |- ( 1o = C -> ( ( 1o ^o A ) C_ ( 1o ^o B ) <-> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 26 | 22 25 | syl5ibcom | |- ( ( A e. On /\ B e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 27 | 26 | 3adant3 | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( C ^o A ) C_ ( C ^o B ) ) ) |
| 28 | 27 | a1dd | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( 1o = C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 29 | 15 28 | jaod | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( ( 1o e. C \/ 1o = C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 30 | 8 29 | sylbid | |- ( ( A e. On /\ B e. On /\ C e. On ) -> ( (/) e. C -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) ) |
| 31 | 30 | imp | |- ( ( ( A e. On /\ B e. On /\ C e. On ) /\ (/) e. C ) -> ( A C_ B -> ( C ^o A ) C_ ( C ^o B ) ) ) |