This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A helper lemma for oe0 and others. (Contributed by NM, 6-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oe0lem.1 | |- ( ( ph /\ A = (/) ) -> ps ) |
|
| oe0lem.2 | |- ( ( ( A e. On /\ ph ) /\ (/) e. A ) -> ps ) |
||
| Assertion | oe0lem | |- ( ( A e. On /\ ph ) -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oe0lem.1 | |- ( ( ph /\ A = (/) ) -> ps ) |
|
| 2 | oe0lem.2 | |- ( ( ( A e. On /\ ph ) /\ (/) e. A ) -> ps ) |
|
| 3 | 1 | ex | |- ( ph -> ( A = (/) -> ps ) ) |
| 4 | 3 | adantl | |- ( ( A e. On /\ ph ) -> ( A = (/) -> ps ) ) |
| 5 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 6 | 5 | adantr | |- ( ( A e. On /\ ph ) -> ( (/) e. A <-> A =/= (/) ) ) |
| 7 | 2 | ex | |- ( ( A e. On /\ ph ) -> ( (/) e. A -> ps ) ) |
| 8 | 6 7 | sylbird | |- ( ( A e. On /\ ph ) -> ( A =/= (/) -> ps ) ) |
| 9 | 4 8 | pm2.61dne | |- ( ( A e. On /\ ph ) -> ps ) |