This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordinal exponentiation with a base of 1. Proposition 8.31(3) of TakeutiZaring p. 67. Lemma 2.17 of Schloeder p. 6. (Contributed by NM, 2-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oe1m | |- ( A e. On -> ( 1o ^o A ) = 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( x = (/) -> ( 1o ^o x ) = ( 1o ^o (/) ) ) |
|
| 2 | 1 | eqeq1d | |- ( x = (/) -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o (/) ) = 1o ) ) |
| 3 | oveq2 | |- ( x = y -> ( 1o ^o x ) = ( 1o ^o y ) ) |
|
| 4 | 3 | eqeq1d | |- ( x = y -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o y ) = 1o ) ) |
| 5 | oveq2 | |- ( x = suc y -> ( 1o ^o x ) = ( 1o ^o suc y ) ) |
|
| 6 | 5 | eqeq1d | |- ( x = suc y -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o suc y ) = 1o ) ) |
| 7 | oveq2 | |- ( x = A -> ( 1o ^o x ) = ( 1o ^o A ) ) |
|
| 8 | 7 | eqeq1d | |- ( x = A -> ( ( 1o ^o x ) = 1o <-> ( 1o ^o A ) = 1o ) ) |
| 9 | 1on | |- 1o e. On |
|
| 10 | oe0 | |- ( 1o e. On -> ( 1o ^o (/) ) = 1o ) |
|
| 11 | 9 10 | ax-mp | |- ( 1o ^o (/) ) = 1o |
| 12 | oesuc | |- ( ( 1o e. On /\ y e. On ) -> ( 1o ^o suc y ) = ( ( 1o ^o y ) .o 1o ) ) |
|
| 13 | 9 12 | mpan | |- ( y e. On -> ( 1o ^o suc y ) = ( ( 1o ^o y ) .o 1o ) ) |
| 14 | oveq1 | |- ( ( 1o ^o y ) = 1o -> ( ( 1o ^o y ) .o 1o ) = ( 1o .o 1o ) ) |
|
| 15 | om1 | |- ( 1o e. On -> ( 1o .o 1o ) = 1o ) |
|
| 16 | 9 15 | ax-mp | |- ( 1o .o 1o ) = 1o |
| 17 | 14 16 | eqtrdi | |- ( ( 1o ^o y ) = 1o -> ( ( 1o ^o y ) .o 1o ) = 1o ) |
| 18 | 13 17 | sylan9eq | |- ( ( y e. On /\ ( 1o ^o y ) = 1o ) -> ( 1o ^o suc y ) = 1o ) |
| 19 | 18 | ex | |- ( y e. On -> ( ( 1o ^o y ) = 1o -> ( 1o ^o suc y ) = 1o ) ) |
| 20 | iuneq2 | |- ( A. y e. x ( 1o ^o y ) = 1o -> U_ y e. x ( 1o ^o y ) = U_ y e. x 1o ) |
|
| 21 | vex | |- x e. _V |
|
| 22 | 0lt1o | |- (/) e. 1o |
|
| 23 | oelim | |- ( ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) /\ (/) e. 1o ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
|
| 24 | 22 23 | mpan2 | |- ( ( 1o e. On /\ ( x e. _V /\ Lim x ) ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
| 25 | 9 24 | mpan | |- ( ( x e. _V /\ Lim x ) -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
| 26 | 21 25 | mpan | |- ( Lim x -> ( 1o ^o x ) = U_ y e. x ( 1o ^o y ) ) |
| 27 | 26 | eqeq1d | |- ( Lim x -> ( ( 1o ^o x ) = 1o <-> U_ y e. x ( 1o ^o y ) = 1o ) ) |
| 28 | 0ellim | |- ( Lim x -> (/) e. x ) |
|
| 29 | ne0i | |- ( (/) e. x -> x =/= (/) ) |
|
| 30 | iunconst | |- ( x =/= (/) -> U_ y e. x 1o = 1o ) |
|
| 31 | 28 29 30 | 3syl | |- ( Lim x -> U_ y e. x 1o = 1o ) |
| 32 | 31 | eqeq2d | |- ( Lim x -> ( U_ y e. x ( 1o ^o y ) = U_ y e. x 1o <-> U_ y e. x ( 1o ^o y ) = 1o ) ) |
| 33 | 27 32 | bitr4d | |- ( Lim x -> ( ( 1o ^o x ) = 1o <-> U_ y e. x ( 1o ^o y ) = U_ y e. x 1o ) ) |
| 34 | 20 33 | imbitrrid | |- ( Lim x -> ( A. y e. x ( 1o ^o y ) = 1o -> ( 1o ^o x ) = 1o ) ) |
| 35 | 2 4 6 8 11 19 34 | tfinds | |- ( A e. On -> ( 1o ^o A ) = 1o ) |