This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-conditional definition of the group order. (Contributed by Stefan O'Rear, 6-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | odval2 | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = ( iota_ x e. NN0 A. y e. NN0 ( x || y <-> ( y .x. A ) = .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | 1 2 | odcl | |- ( A e. X -> ( O ` A ) e. NN0 ) |
| 6 | 5 | adantl | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) e. NN0 ) |
| 7 | 1 2 3 4 | odeq | |- ( ( G e. Grp /\ A e. X /\ x e. NN0 ) -> ( x = ( O ` A ) <-> A. y e. NN0 ( x || y <-> ( y .x. A ) = .0. ) ) ) |
| 8 | 7 | 3expa | |- ( ( ( G e. Grp /\ A e. X ) /\ x e. NN0 ) -> ( x = ( O ` A ) <-> A. y e. NN0 ( x || y <-> ( y .x. A ) = .0. ) ) ) |
| 9 | 8 | bicomd | |- ( ( ( G e. Grp /\ A e. X ) /\ x e. NN0 ) -> ( A. y e. NN0 ( x || y <-> ( y .x. A ) = .0. ) <-> x = ( O ` A ) ) ) |
| 10 | 6 9 | riota5 | |- ( ( G e. Grp /\ A e. X ) -> ( iota_ x e. NN0 A. y e. NN0 ( x || y <-> ( y .x. A ) = .0. ) ) = ( O ` A ) ) |
| 11 | 10 | eqcomd | |- ( ( G e. Grp /\ A e. X ) -> ( O ` A ) = ( iota_ x e. NN0 A. y e. NN0 ( x || y <-> ( y .x. A ) = .0. ) ) ) |