This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two times an integer plus one is not negative iff the integer is not negative. (Contributed by AV, 19-Jun-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2tnp1ge0ge0 | |- ( N e. ZZ -> ( 0 <_ ( ( 2 x. N ) + 1 ) <-> 0 <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z | |- 2 e. ZZ |
|
| 2 | 1 | a1i | |- ( N e. ZZ -> 2 e. ZZ ) |
| 3 | id | |- ( N e. ZZ -> N e. ZZ ) |
|
| 4 | 2 3 | zmulcld | |- ( N e. ZZ -> ( 2 x. N ) e. ZZ ) |
| 5 | 4 | peano2zd | |- ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. ZZ ) |
| 6 | 5 | zred | |- ( N e. ZZ -> ( ( 2 x. N ) + 1 ) e. RR ) |
| 7 | 2rp | |- 2 e. RR+ |
|
| 8 | 7 | a1i | |- ( N e. ZZ -> 2 e. RR+ ) |
| 9 | 6 8 | ge0divd | |- ( N e. ZZ -> ( 0 <_ ( ( 2 x. N ) + 1 ) <-> 0 <_ ( ( ( 2 x. N ) + 1 ) / 2 ) ) ) |
| 10 | 4 | zcnd | |- ( N e. ZZ -> ( 2 x. N ) e. CC ) |
| 11 | 1cnd | |- ( N e. ZZ -> 1 e. CC ) |
|
| 12 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 13 | 12 | a1i | |- ( N e. ZZ -> ( 2 e. CC /\ 2 =/= 0 ) ) |
| 14 | divdir | |- ( ( ( 2 x. N ) e. CC /\ 1 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) |
|
| 15 | 10 11 13 14 | syl3anc | |- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) ) |
| 16 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 17 | 2cnd | |- ( N e. ZZ -> 2 e. CC ) |
|
| 18 | 2ne0 | |- 2 =/= 0 |
|
| 19 | 18 | a1i | |- ( N e. ZZ -> 2 =/= 0 ) |
| 20 | 16 17 19 | divcan3d | |- ( N e. ZZ -> ( ( 2 x. N ) / 2 ) = N ) |
| 21 | 20 | oveq1d | |- ( N e. ZZ -> ( ( ( 2 x. N ) / 2 ) + ( 1 / 2 ) ) = ( N + ( 1 / 2 ) ) ) |
| 22 | 15 21 | eqtrd | |- ( N e. ZZ -> ( ( ( 2 x. N ) + 1 ) / 2 ) = ( N + ( 1 / 2 ) ) ) |
| 23 | 22 | breq2d | |- ( N e. ZZ -> ( 0 <_ ( ( ( 2 x. N ) + 1 ) / 2 ) <-> 0 <_ ( N + ( 1 / 2 ) ) ) ) |
| 24 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 25 | halfre | |- ( 1 / 2 ) e. RR |
|
| 26 | 25 | a1i | |- ( N e. ZZ -> ( 1 / 2 ) e. RR ) |
| 27 | 24 26 | readdcld | |- ( N e. ZZ -> ( N + ( 1 / 2 ) ) e. RR ) |
| 28 | halfge0 | |- 0 <_ ( 1 / 2 ) |
|
| 29 | 24 26 | addge01d | |- ( N e. ZZ -> ( 0 <_ ( 1 / 2 ) <-> N <_ ( N + ( 1 / 2 ) ) ) ) |
| 30 | 28 29 | mpbii | |- ( N e. ZZ -> N <_ ( N + ( 1 / 2 ) ) ) |
| 31 | 1red | |- ( N e. ZZ -> 1 e. RR ) |
|
| 32 | halflt1 | |- ( 1 / 2 ) < 1 |
|
| 33 | 32 | a1i | |- ( N e. ZZ -> ( 1 / 2 ) < 1 ) |
| 34 | 26 31 24 33 | ltadd2dd | |- ( N e. ZZ -> ( N + ( 1 / 2 ) ) < ( N + 1 ) ) |
| 35 | btwnzge0 | |- ( ( ( ( N + ( 1 / 2 ) ) e. RR /\ N e. ZZ ) /\ ( N <_ ( N + ( 1 / 2 ) ) /\ ( N + ( 1 / 2 ) ) < ( N + 1 ) ) ) -> ( 0 <_ ( N + ( 1 / 2 ) ) <-> 0 <_ N ) ) |
|
| 36 | 27 3 30 34 35 | syl22anc | |- ( N e. ZZ -> ( 0 <_ ( N + ( 1 / 2 ) ) <-> 0 <_ N ) ) |
| 37 | 9 23 36 | 3bitrd | |- ( N e. ZZ -> ( 0 <_ ( ( 2 x. N ) + 1 ) <-> 0 <_ N ) ) |