This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Proportionality property of the norm of a scalar product in a normed complex vector space. (Contributed by NM, 11-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvs.1 | |- X = ( BaseSet ` U ) |
|
| nvs.4 | |- S = ( .sOLD ` U ) |
||
| nvs.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvs | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvs.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nvs.6 | |- N = ( normCV ` U ) |
|
| 4 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 5 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 6 | 1 4 2 5 3 | nvi | |- ( U e. NrmCVec -> ( <. ( +v ` U ) , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 7 | 6 | simp3d | |- ( U e. NrmCVec -> A. x e. X ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) |
| 8 | simp2 | |- ( ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) ) |
|
| 9 | 8 | ralimi | |- ( A. x e. X ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x ( +v ` U ) y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> A. x e. X A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) ) |
| 10 | 7 9 | syl | |- ( U e. NrmCVec -> A. x e. X A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) ) |
| 11 | oveq2 | |- ( x = B -> ( y S x ) = ( y S B ) ) |
|
| 12 | 11 | fveq2d | |- ( x = B -> ( N ` ( y S x ) ) = ( N ` ( y S B ) ) ) |
| 13 | fveq2 | |- ( x = B -> ( N ` x ) = ( N ` B ) ) |
|
| 14 | 13 | oveq2d | |- ( x = B -> ( ( abs ` y ) x. ( N ` x ) ) = ( ( abs ` y ) x. ( N ` B ) ) ) |
| 15 | 12 14 | eqeq12d | |- ( x = B -> ( ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) <-> ( N ` ( y S B ) ) = ( ( abs ` y ) x. ( N ` B ) ) ) ) |
| 16 | fvoveq1 | |- ( y = A -> ( N ` ( y S B ) ) = ( N ` ( A S B ) ) ) |
|
| 17 | fveq2 | |- ( y = A -> ( abs ` y ) = ( abs ` A ) ) |
|
| 18 | 17 | oveq1d | |- ( y = A -> ( ( abs ` y ) x. ( N ` B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| 19 | 16 18 | eqeq12d | |- ( y = A -> ( ( N ` ( y S B ) ) = ( ( abs ` y ) x. ( N ` B ) ) <-> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) ) |
| 20 | 15 19 | rspc2v | |- ( ( B e. X /\ A e. CC ) -> ( A. x e. X A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) -> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) ) |
| 21 | 10 20 | syl5 | |- ( ( B e. X /\ A e. CC ) -> ( U e. NrmCVec -> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) ) |
| 22 | 21 | 3impia | |- ( ( B e. X /\ A e. CC /\ U e. NrmCVec ) -> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |
| 23 | 22 | 3com13 | |- ( ( U e. NrmCVec /\ A e. CC /\ B e. X ) -> ( N ` ( A S B ) ) = ( ( abs ` A ) x. ( N ` B ) ) ) |