This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvdi.1 | |- X = ( BaseSet ` U ) |
|
| nvdi.2 | |- G = ( +v ` U ) |
||
| nvdi.4 | |- S = ( .sOLD ` U ) |
||
| Assertion | nvdi | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B G C ) ) = ( ( A S B ) G ( A S C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvdi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvdi.2 | |- G = ( +v ` U ) |
|
| 3 | nvdi.4 | |- S = ( .sOLD ` U ) |
|
| 4 | eqid | |- ( 1st ` U ) = ( 1st ` U ) |
|
| 5 | 4 | nvvc | |- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
| 6 | 2 | vafval | |- G = ( 1st ` ( 1st ` U ) ) |
| 7 | 3 | smfval | |- S = ( 2nd ` ( 1st ` U ) ) |
| 8 | 1 2 | bafval | |- X = ran G |
| 9 | 6 7 8 | vcdi | |- ( ( ( 1st ` U ) e. CVecOLD /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B G C ) ) = ( ( A S B ) G ( A S C ) ) ) |
| 10 | 5 9 | sylan | |- ( ( U e. NrmCVec /\ ( A e. CC /\ B e. X /\ C e. X ) ) -> ( A S ( B G C ) ) = ( ( A S B ) G ( A S C ) ) ) |