This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvi.1 | |- X = ( BaseSet ` U ) |
|
| nvi.2 | |- G = ( +v ` U ) |
||
| nvi.4 | |- S = ( .sOLD ` U ) |
||
| nvi.5 | |- Z = ( 0vec ` U ) |
||
| nvi.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvi | |- ( U e. NrmCVec -> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvi.2 | |- G = ( +v ` U ) |
|
| 3 | nvi.4 | |- S = ( .sOLD ` U ) |
|
| 4 | nvi.5 | |- Z = ( 0vec ` U ) |
|
| 5 | nvi.6 | |- N = ( normCV ` U ) |
|
| 6 | eqid | |- ( 1st ` U ) = ( 1st ` U ) |
|
| 7 | 6 5 | nvop2 | |- ( U e. NrmCVec -> U = <. ( 1st ` U ) , N >. ) |
| 8 | 6 2 3 | nvvop | |- ( U e. NrmCVec -> ( 1st ` U ) = <. G , S >. ) |
| 9 | 8 | opeq1d | |- ( U e. NrmCVec -> <. ( 1st ` U ) , N >. = <. <. G , S >. , N >. ) |
| 10 | 7 9 | eqtrd | |- ( U e. NrmCVec -> U = <. <. G , S >. , N >. ) |
| 11 | id | |- ( U e. NrmCVec -> U e. NrmCVec ) |
|
| 12 | 10 11 | eqeltrrd | |- ( U e. NrmCVec -> <. <. G , S >. , N >. e. NrmCVec ) |
| 13 | 1 2 | bafval | |- X = ran G |
| 14 | eqid | |- ( GId ` G ) = ( GId ` G ) |
|
| 15 | 13 14 | isnv | |- ( <. <. G , S >. , N >. e. NrmCVec <-> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = ( GId ` G ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 16 | 12 15 | sylib | |- ( U e. NrmCVec -> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = ( GId ` G ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 17 | 2 4 | 0vfval | |- ( U e. NrmCVec -> Z = ( GId ` G ) ) |
| 18 | 17 | eqeq2d | |- ( U e. NrmCVec -> ( x = Z <-> x = ( GId ` G ) ) ) |
| 19 | 18 | imbi2d | |- ( U e. NrmCVec -> ( ( ( N ` x ) = 0 -> x = Z ) <-> ( ( N ` x ) = 0 -> x = ( GId ` G ) ) ) ) |
| 20 | 19 | 3anbi1d | |- ( U e. NrmCVec -> ( ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) <-> ( ( ( N ` x ) = 0 -> x = ( GId ` G ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 21 | 20 | ralbidv | |- ( U e. NrmCVec -> ( A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) <-> A. x e. X ( ( ( N ` x ) = 0 -> x = ( GId ` G ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 22 | 21 | 3anbi3d | |- ( U e. NrmCVec -> ( ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) <-> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = ( GId ` G ) ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) ) |
| 23 | 16 22 | mpbird | |- ( U e. NrmCVec -> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |