This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a normed complex vector space, which is a vector space accompanied by a norm. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvi.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| nvi.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| nvi.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| nvi.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvi | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvi.2 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | nvi.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 4 | nvi.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 5 | nvi.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 6 | eqid | ⊢ ( 1st ‘ 𝑈 ) = ( 1st ‘ 𝑈 ) | |
| 7 | 6 5 | nvop2 | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 ( 1st ‘ 𝑈 ) , 𝑁 〉 ) |
| 8 | 6 2 3 | nvvop | ⊢ ( 𝑈 ∈ NrmCVec → ( 1st ‘ 𝑈 ) = 〈 𝐺 , 𝑆 〉 ) |
| 9 | 8 | opeq1d | ⊢ ( 𝑈 ∈ NrmCVec → 〈 ( 1st ‘ 𝑈 ) , 𝑁 〉 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
| 10 | 7 9 | eqtrd | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
| 11 | id | ⊢ ( 𝑈 ∈ NrmCVec → 𝑈 ∈ NrmCVec ) | |
| 12 | 10 11 | eqeltrrd | ⊢ ( 𝑈 ∈ NrmCVec → 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ) |
| 13 | 1 2 | bafval | ⊢ 𝑋 = ran 𝐺 |
| 14 | eqid | ⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) | |
| 15 | 13 14 | isnv | ⊢ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 16 | 12 15 | sylib | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 17 | 2 4 | 0vfval | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 = ( GId ‘ 𝐺 ) ) |
| 18 | 17 | eqeq2d | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑥 = 𝑍 ↔ 𝑥 = ( GId ‘ 𝐺 ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑈 ∈ NrmCVec → ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ↔ ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ) ) |
| 20 | 19 | 3anbi1d | ⊢ ( 𝑈 ∈ NrmCVec → ( ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝑈 ∈ NrmCVec → ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
| 22 | 21 | 3anbi3d | ⊢ ( 𝑈 ∈ NrmCVec → ( ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ↔ ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = ( GId ‘ 𝐺 ) ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) ) |
| 23 | 16 22 | mpbird | ⊢ ( 𝑈 ∈ NrmCVec → ( 〈 𝐺 , 𝑆 〉 ∈ CVecOLD ∧ 𝑁 : 𝑋 ⟶ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑁 ‘ 𝑥 ) = 0 → 𝑥 = 𝑍 ) ∧ ∀ 𝑦 ∈ ℂ ( 𝑁 ‘ ( 𝑦 𝑆 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( 𝑁 ‘ 𝑥 ) ) ∧ ∀ 𝑦 ∈ 𝑋 ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ≤ ( ( 𝑁 ‘ 𝑥 ) + ( 𝑁 ‘ 𝑦 ) ) ) ) ) |