This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector space component of a normed complex vector space. (Contributed by NM, 28-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nvvc.1 | |- W = ( 1st ` U ) |
|
| Assertion | nvvc | |- ( U e. NrmCVec -> W e. CVecOLD ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvc.1 | |- W = ( 1st ` U ) |
|
| 2 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 3 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 4 | 1 2 3 | nvvop | |- ( U e. NrmCVec -> W = <. ( +v ` U ) , ( .sOLD ` U ) >. ) |
| 5 | eqid | |- ( BaseSet ` U ) = ( BaseSet ` U ) |
|
| 6 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 7 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 8 | 5 2 3 6 7 | nvi | |- ( U e. NrmCVec -> ( <. ( +v ` U ) , ( .sOLD ` U ) >. e. CVecOLD /\ ( normCV ` U ) : ( BaseSet ` U ) --> RR /\ A. x e. ( BaseSet ` U ) ( ( ( ( normCV ` U ) ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( ( normCV ` U ) ` ( y ( .sOLD ` U ) x ) ) = ( ( abs ` y ) x. ( ( normCV ` U ) ` x ) ) /\ A. y e. ( BaseSet ` U ) ( ( normCV ` U ) ` ( x ( +v ` U ) y ) ) <_ ( ( ( normCV ` U ) ` x ) + ( ( normCV ` U ) ` y ) ) ) ) ) |
| 9 | 8 | simp1d | |- ( U e. NrmCVec -> <. ( +v ` U ) , ( .sOLD ` U ) >. e. CVecOLD ) |
| 10 | 4 9 | eqeltrd | |- ( U e. NrmCVec -> W e. CVecOLD ) |