This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a normed complex vector space." (Contributed by NM, 5-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isnv.1 | |- X = ran G |
|
| isnv.2 | |- Z = ( GId ` G ) |
||
| Assertion | isnv | |- ( <. <. G , S >. , N >. e. NrmCVec <-> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isnv.1 | |- X = ran G |
|
| 2 | isnv.2 | |- Z = ( GId ` G ) |
|
| 3 | nvex | |- ( <. <. G , S >. , N >. e. NrmCVec -> ( G e. _V /\ S e. _V /\ N e. _V ) ) |
|
| 4 | vcex | |- ( <. G , S >. e. CVecOLD -> ( G e. _V /\ S e. _V ) ) |
|
| 5 | 4 | adantr | |- ( ( <. G , S >. e. CVecOLD /\ N : X --> RR ) -> ( G e. _V /\ S e. _V ) ) |
| 6 | 4 | simpld | |- ( <. G , S >. e. CVecOLD -> G e. _V ) |
| 7 | rnexg | |- ( G e. _V -> ran G e. _V ) |
|
| 8 | 6 7 | syl | |- ( <. G , S >. e. CVecOLD -> ran G e. _V ) |
| 9 | 1 8 | eqeltrid | |- ( <. G , S >. e. CVecOLD -> X e. _V ) |
| 10 | fex | |- ( ( N : X --> RR /\ X e. _V ) -> N e. _V ) |
|
| 11 | 9 10 | sylan2 | |- ( ( N : X --> RR /\ <. G , S >. e. CVecOLD ) -> N e. _V ) |
| 12 | 11 | ancoms | |- ( ( <. G , S >. e. CVecOLD /\ N : X --> RR ) -> N e. _V ) |
| 13 | df-3an | |- ( ( G e. _V /\ S e. _V /\ N e. _V ) <-> ( ( G e. _V /\ S e. _V ) /\ N e. _V ) ) |
|
| 14 | 5 12 13 | sylanbrc | |- ( ( <. G , S >. e. CVecOLD /\ N : X --> RR ) -> ( G e. _V /\ S e. _V /\ N e. _V ) ) |
| 15 | 14 | 3adant3 | |- ( ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) -> ( G e. _V /\ S e. _V /\ N e. _V ) ) |
| 16 | 1 2 | isnvlem | |- ( ( G e. _V /\ S e. _V /\ N e. _V ) -> ( <. <. G , S >. , N >. e. NrmCVec <-> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) ) |
| 17 | 3 15 16 | pm5.21nii | |- ( <. <. G , S >. , N >. e. NrmCVec <-> ( <. G , S >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = Z ) /\ A. y e. CC ( N ` ( y S x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |