This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vector space component of a normed complex vector space is an ordered pair of the underlying group and a scalar product. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvvop.1 | |- W = ( 1st ` U ) |
|
| nvvop.2 | |- G = ( +v ` U ) |
||
| nvvop.4 | |- S = ( .sOLD ` U ) |
||
| Assertion | nvvop | |- ( U e. NrmCVec -> W = <. G , S >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvvop.1 | |- W = ( 1st ` U ) |
|
| 2 | nvvop.2 | |- G = ( +v ` U ) |
|
| 3 | nvvop.4 | |- S = ( .sOLD ` U ) |
|
| 4 | vcrel | |- Rel CVecOLD |
|
| 5 | nvss | |- NrmCVec C_ ( CVecOLD X. _V ) |
|
| 6 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 7 | 1 6 | nvop2 | |- ( U e. NrmCVec -> U = <. W , ( normCV ` U ) >. ) |
| 8 | 7 | eleq1d | |- ( U e. NrmCVec -> ( U e. NrmCVec <-> <. W , ( normCV ` U ) >. e. NrmCVec ) ) |
| 9 | 8 | ibi | |- ( U e. NrmCVec -> <. W , ( normCV ` U ) >. e. NrmCVec ) |
| 10 | 5 9 | sselid | |- ( U e. NrmCVec -> <. W , ( normCV ` U ) >. e. ( CVecOLD X. _V ) ) |
| 11 | opelxp1 | |- ( <. W , ( normCV ` U ) >. e. ( CVecOLD X. _V ) -> W e. CVecOLD ) |
|
| 12 | 10 11 | syl | |- ( U e. NrmCVec -> W e. CVecOLD ) |
| 13 | 1st2nd | |- ( ( Rel CVecOLD /\ W e. CVecOLD ) -> W = <. ( 1st ` W ) , ( 2nd ` W ) >. ) |
|
| 14 | 4 12 13 | sylancr | |- ( U e. NrmCVec -> W = <. ( 1st ` W ) , ( 2nd ` W ) >. ) |
| 15 | 2 | vafval | |- G = ( 1st ` ( 1st ` U ) ) |
| 16 | 1 | fveq2i | |- ( 1st ` W ) = ( 1st ` ( 1st ` U ) ) |
| 17 | 15 16 | eqtr4i | |- G = ( 1st ` W ) |
| 18 | 3 | smfval | |- S = ( 2nd ` ( 1st ` U ) ) |
| 19 | 1 | fveq2i | |- ( 2nd ` W ) = ( 2nd ` ( 1st ` U ) ) |
| 20 | 18 19 | eqtr4i | |- S = ( 2nd ` W ) |
| 21 | 17 20 | opeq12i | |- <. G , S >. = <. ( 1st ` W ) , ( 2nd ` W ) >. |
| 22 | 14 21 | eqtr4di | |- ( U e. NrmCVec -> W = <. G , S >. ) |