This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical representation of a rational is fully reduced. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qnumdencoprm | |- ( A e. QQ -> ( ( numer ` A ) gcd ( denom ` A ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( A e. QQ -> ( numer ` A ) = ( numer ` A ) ) |
|
| 2 | eqid | |- ( denom ` A ) = ( denom ` A ) |
|
| 3 | 1 2 | jctir | |- ( A e. QQ -> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) |
| 4 | qnumcl | |- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
|
| 5 | qdencl | |- ( A e. QQ -> ( denom ` A ) e. NN ) |
|
| 6 | qnumdenbi | |- ( ( A e. QQ /\ ( numer ` A ) e. ZZ /\ ( denom ` A ) e. NN ) -> ( ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) <-> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) ) |
|
| 7 | 4 5 6 | mpd3an23 | |- ( A e. QQ -> ( ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) <-> ( ( numer ` A ) = ( numer ` A ) /\ ( denom ` A ) = ( denom ` A ) ) ) ) |
| 8 | 3 7 | mpbird | |- ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) = 1 /\ A = ( ( numer ` A ) / ( denom ` A ) ) ) ) |
| 9 | 8 | simpld | |- ( A e. QQ -> ( ( numer ` A ) gcd ( denom ` A ) ) = 1 ) |