This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Squaring a rational squares its canonical components. (Contributed by Stefan O'Rear, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | numdensq | |- ( A e. QQ -> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qnumdencoprm | |- ( A e. QQ -> ( ( numer ` A ) gcd ( denom ` A ) ) = 1 ) |
|
| 2 | 1 | oveq1d | |- ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( 1 ^ 2 ) ) |
| 3 | qnumcl | |- ( A e. QQ -> ( numer ` A ) e. ZZ ) |
|
| 4 | qdencl | |- ( A e. QQ -> ( denom ` A ) e. NN ) |
|
| 5 | 4 | nnzd | |- ( A e. QQ -> ( denom ` A ) e. ZZ ) |
| 6 | zgcdsq | |- ( ( ( numer ` A ) e. ZZ /\ ( denom ` A ) e. ZZ ) -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) ) |
|
| 7 | 3 5 6 | syl2anc | |- ( A e. QQ -> ( ( ( numer ` A ) gcd ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) ) |
| 8 | sq1 | |- ( 1 ^ 2 ) = 1 |
|
| 9 | 8 | a1i | |- ( A e. QQ -> ( 1 ^ 2 ) = 1 ) |
| 10 | 2 7 9 | 3eqtr3d | |- ( A e. QQ -> ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 ) |
| 11 | qeqnumdivden | |- ( A e. QQ -> A = ( ( numer ` A ) / ( denom ` A ) ) ) |
|
| 12 | 11 | oveq1d | |- ( A e. QQ -> ( A ^ 2 ) = ( ( ( numer ` A ) / ( denom ` A ) ) ^ 2 ) ) |
| 13 | 3 | zcnd | |- ( A e. QQ -> ( numer ` A ) e. CC ) |
| 14 | 4 | nncnd | |- ( A e. QQ -> ( denom ` A ) e. CC ) |
| 15 | 4 | nnne0d | |- ( A e. QQ -> ( denom ` A ) =/= 0 ) |
| 16 | 13 14 15 | sqdivd | |- ( A e. QQ -> ( ( ( numer ` A ) / ( denom ` A ) ) ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) |
| 17 | 12 16 | eqtrd | |- ( A e. QQ -> ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) |
| 18 | qsqcl | |- ( A e. QQ -> ( A ^ 2 ) e. QQ ) |
|
| 19 | zsqcl | |- ( ( numer ` A ) e. ZZ -> ( ( numer ` A ) ^ 2 ) e. ZZ ) |
|
| 20 | 3 19 | syl | |- ( A e. QQ -> ( ( numer ` A ) ^ 2 ) e. ZZ ) |
| 21 | 4 | nnsqcld | |- ( A e. QQ -> ( ( denom ` A ) ^ 2 ) e. NN ) |
| 22 | qnumdenbi | |- ( ( ( A ^ 2 ) e. QQ /\ ( ( numer ` A ) ^ 2 ) e. ZZ /\ ( ( denom ` A ) ^ 2 ) e. NN ) -> ( ( ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 /\ ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) <-> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) ) |
|
| 23 | 18 20 21 22 | syl3anc | |- ( A e. QQ -> ( ( ( ( ( numer ` A ) ^ 2 ) gcd ( ( denom ` A ) ^ 2 ) ) = 1 /\ ( A ^ 2 ) = ( ( ( numer ` A ) ^ 2 ) / ( ( denom ` A ) ^ 2 ) ) ) <-> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) ) |
| 24 | 10 17 23 | mpbi2and | |- ( A e. QQ -> ( ( numer ` ( A ^ 2 ) ) = ( ( numer ` A ) ^ 2 ) /\ ( denom ` ( A ^ 2 ) ) = ( ( denom ` A ) ^ 2 ) ) ) |