This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation distributes over GCD. zgcdsq extended to nonnegative exponents. nn0expgcd extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zexpgcd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdabs | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( abs ` A ) gcd ( abs ` B ) ) = ( A gcd B ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( abs ` A ) gcd ( abs ` B ) ) = ( A gcd B ) ) |
| 3 | 2 | eqcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A gcd B ) = ( ( abs ` A ) gcd ( abs ` B ) ) ) |
| 4 | 3 | oveq1d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( ( abs ` A ) gcd ( abs ` B ) ) ^ N ) ) |
| 5 | nn0abscl | |- ( A e. ZZ -> ( abs ` A ) e. NN0 ) |
|
| 6 | nn0abscl | |- ( B e. ZZ -> ( abs ` B ) e. NN0 ) |
|
| 7 | id | |- ( N e. NN0 -> N e. NN0 ) |
|
| 8 | nn0expgcd | |- ( ( ( abs ` A ) e. NN0 /\ ( abs ` B ) e. NN0 /\ N e. NN0 ) -> ( ( ( abs ` A ) gcd ( abs ` B ) ) ^ N ) = ( ( ( abs ` A ) ^ N ) gcd ( ( abs ` B ) ^ N ) ) ) |
|
| 9 | 5 6 7 8 | syl3an | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( ( abs ` A ) gcd ( abs ` B ) ) ^ N ) = ( ( ( abs ` A ) ^ N ) gcd ( ( abs ` B ) ^ N ) ) ) |
| 10 | zcn | |- ( A e. ZZ -> A e. CC ) |
|
| 11 | 10 | 3ad2ant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> A e. CC ) |
| 12 | simp3 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> N e. NN0 ) |
|
| 13 | 11 12 | absexpd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( abs ` ( A ^ N ) ) = ( ( abs ` A ) ^ N ) ) |
| 14 | 13 | eqcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( abs ` A ) ^ N ) = ( abs ` ( A ^ N ) ) ) |
| 15 | zcn | |- ( B e. ZZ -> B e. CC ) |
|
| 16 | 15 | 3ad2ant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> B e. CC ) |
| 17 | 16 12 | absexpd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( abs ` ( B ^ N ) ) = ( ( abs ` B ) ^ N ) ) |
| 18 | 17 | eqcomd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( abs ` B ) ^ N ) = ( abs ` ( B ^ N ) ) ) |
| 19 | 14 18 | oveq12d | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( ( abs ` A ) ^ N ) gcd ( ( abs ` B ) ^ N ) ) = ( ( abs ` ( A ^ N ) ) gcd ( abs ` ( B ^ N ) ) ) ) |
| 20 | zexpcl | |- ( ( A e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
|
| 21 | 20 | 3adant2 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ ) |
| 22 | zexpcl | |- ( ( B e. ZZ /\ N e. NN0 ) -> ( B ^ N ) e. ZZ ) |
|
| 23 | 22 | 3adant1 | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( B ^ N ) e. ZZ ) |
| 24 | gcdabs | |- ( ( ( A ^ N ) e. ZZ /\ ( B ^ N ) e. ZZ ) -> ( ( abs ` ( A ^ N ) ) gcd ( abs ` ( B ^ N ) ) ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
|
| 25 | 21 23 24 | syl2anc | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( abs ` ( A ^ N ) ) gcd ( abs ` ( B ^ N ) ) ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 26 | 19 25 | eqtrd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( ( abs ` A ) ^ N ) gcd ( ( abs ` B ) ^ N ) ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |
| 27 | 4 9 26 | 3eqtrd | |- ( ( A e. ZZ /\ B e. ZZ /\ N e. NN0 ) -> ( ( A gcd B ) ^ N ) = ( ( A ^ N ) gcd ( B ^ N ) ) ) |