This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nrmtngdist.t | |- T = ( G toNrmGrp ( norm ` G ) ) |
|
| Assertion | nrmtngnrm | |- ( G e. NrmGrp -> ( T e. NrmGrp /\ ( norm ` T ) = ( norm ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtngdist.t | |- T = ( G toNrmGrp ( norm ` G ) ) |
|
| 2 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 1 3 | nrmtngdist | |- ( G e. NrmGrp -> ( dist ` T ) = ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) ) |
| 5 | eqid | |- ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) = ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) |
|
| 6 | 3 5 | ngpmet | |- ( G e. NrmGrp -> ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) e. ( Met ` ( Base ` G ) ) ) |
| 7 | 4 6 | eqeltrd | |- ( G e. NrmGrp -> ( dist ` T ) e. ( Met ` ( Base ` G ) ) ) |
| 8 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 9 | 3 8 | nmf | |- ( G e. NrmGrp -> ( norm ` G ) : ( Base ` G ) --> RR ) |
| 10 | eqid | |- ( dist ` T ) = ( dist ` T ) |
|
| 11 | 1 3 10 | tngngp2 | |- ( ( norm ` G ) : ( Base ` G ) --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` ( Base ` G ) ) ) ) ) |
| 12 | 9 11 | syl | |- ( G e. NrmGrp -> ( T e. NrmGrp <-> ( G e. Grp /\ ( dist ` T ) e. ( Met ` ( Base ` G ) ) ) ) ) |
| 13 | 2 7 12 | mpbir2and | |- ( G e. NrmGrp -> T e. NrmGrp ) |
| 14 | 2 9 | jca | |- ( G e. NrmGrp -> ( G e. Grp /\ ( norm ` G ) : ( Base ` G ) --> RR ) ) |
| 15 | reex | |- RR e. _V |
|
| 16 | 1 3 15 | tngnm | |- ( ( G e. Grp /\ ( norm ` G ) : ( Base ` G ) --> RR ) -> ( norm ` G ) = ( norm ` T ) ) |
| 17 | 14 16 | syl | |- ( G e. NrmGrp -> ( norm ` G ) = ( norm ` T ) ) |
| 18 | 17 | eqcomd | |- ( G e. NrmGrp -> ( norm ` T ) = ( norm ` G ) ) |
| 19 | 13 18 | jca | |- ( G e. NrmGrp -> ( T e. NrmGrp /\ ( norm ` T ) = ( norm ` G ) ) ) |