This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The augmentation of a normed group by its own norm is a normed group with the same norm. (Contributed by AV, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nrmtngdist.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) | |
| Assertion | nrmtngnrm | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtngdist.t | ⊢ 𝑇 = ( 𝐺 toNrmGrp ( norm ‘ 𝐺 ) ) | |
| 2 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 4 | 1 3 | nrmtngdist | ⊢ ( 𝐺 ∈ NrmGrp → ( dist ‘ 𝑇 ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) |
| 5 | eqid | ⊢ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) | |
| 6 | 3 5 | ngpmet | ⊢ ( 𝐺 ∈ NrmGrp → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) |
| 7 | 4 6 | eqeltrd | ⊢ ( 𝐺 ∈ NrmGrp → ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) |
| 8 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 9 | 3 8 | nmf | ⊢ ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) |
| 10 | eqid | ⊢ ( dist ‘ 𝑇 ) = ( dist ‘ 𝑇 ) | |
| 11 | 1 3 10 | tngngp2 | ⊢ ( ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ↔ ( 𝐺 ∈ Grp ∧ ( dist ‘ 𝑇 ) ∈ ( Met ‘ ( Base ‘ 𝐺 ) ) ) ) ) |
| 13 | 2 7 12 | mpbir2and | ⊢ ( 𝐺 ∈ NrmGrp → 𝑇 ∈ NrmGrp ) |
| 14 | 2 9 | jca | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝐺 ∈ Grp ∧ ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) ) |
| 15 | reex | ⊢ ℝ ∈ V | |
| 16 | 1 3 15 | tngnm | ⊢ ( ( 𝐺 ∈ Grp ∧ ( norm ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ℝ ) → ( norm ‘ 𝐺 ) = ( norm ‘ 𝑇 ) ) |
| 17 | 14 16 | syl | ⊢ ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝐺 ) = ( norm ‘ 𝑇 ) ) |
| 18 | 17 | eqcomd | ⊢ ( 𝐺 ∈ NrmGrp → ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) |
| 19 | 13 18 | jca | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑇 ∈ NrmGrp ∧ ( norm ‘ 𝑇 ) = ( norm ‘ 𝐺 ) ) ) |