This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The augmentation of a normed group by its own norm has the same distance function as the normed group (restricted to the base set). (Contributed by AV, 15-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nrmtngdist.t | |- T = ( G toNrmGrp ( norm ` G ) ) |
|
| nrmtngdist.x | |- X = ( Base ` G ) |
||
| Assertion | nrmtngdist | |- ( G e. NrmGrp -> ( dist ` T ) = ( ( dist ` G ) |` ( X X. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrmtngdist.t | |- T = ( G toNrmGrp ( norm ` G ) ) |
|
| 2 | nrmtngdist.x | |- X = ( Base ` G ) |
|
| 3 | fvex | |- ( norm ` G ) e. _V |
|
| 4 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 5 | 1 4 | tngds | |- ( ( norm ` G ) e. _V -> ( ( norm ` G ) o. ( -g ` G ) ) = ( dist ` T ) ) |
| 6 | 3 5 | ax-mp | |- ( ( norm ` G ) o. ( -g ` G ) ) = ( dist ` T ) |
| 7 | eqid | |- ( norm ` G ) = ( norm ` G ) |
|
| 8 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 9 | eqid | |- ( ( dist ` G ) |` ( X X. X ) ) = ( ( dist ` G ) |` ( X X. X ) ) |
|
| 10 | 7 4 8 2 9 | isngp2 | |- ( G e. NrmGrp <-> ( G e. Grp /\ G e. MetSp /\ ( ( norm ` G ) o. ( -g ` G ) ) = ( ( dist ` G ) |` ( X X. X ) ) ) ) |
| 11 | 10 | simp3bi | |- ( G e. NrmGrp -> ( ( norm ` G ) o. ( -g ` G ) ) = ( ( dist ` G ) |` ( X X. X ) ) ) |
| 12 | 6 11 | eqtr3id | |- ( G e. NrmGrp -> ( dist ` T ) = ( ( dist ` G ) |` ( X X. X ) ) ) |