This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The induced metric of a normed group is a function. (Contributed by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tngngpim.t | |- T = ( G toNrmGrp N ) |
|
| tngngpim.n | |- N = ( norm ` G ) |
||
| tngngpim.x | |- X = ( Base ` G ) |
||
| tngngpim.d | |- D = ( dist ` T ) |
||
| Assertion | tngngpim | |- ( G e. NrmGrp -> D : ( X X. X ) --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tngngpim.t | |- T = ( G toNrmGrp N ) |
|
| 2 | tngngpim.n | |- N = ( norm ` G ) |
|
| 3 | tngngpim.x | |- X = ( Base ` G ) |
|
| 4 | tngngpim.d | |- D = ( dist ` T ) |
|
| 5 | 3 2 | nmf | |- ( G e. NrmGrp -> N : X --> RR ) |
| 6 | 2 | oveq2i | |- ( G toNrmGrp N ) = ( G toNrmGrp ( norm ` G ) ) |
| 7 | 1 6 | eqtri | |- T = ( G toNrmGrp ( norm ` G ) ) |
| 8 | 7 | nrmtngnrm | |- ( G e. NrmGrp -> ( T e. NrmGrp /\ ( norm ` T ) = ( norm ` G ) ) ) |
| 9 | 1 3 4 | tngngp2 | |- ( N : X --> RR -> ( T e. NrmGrp <-> ( G e. Grp /\ D e. ( Met ` X ) ) ) ) |
| 10 | simpr | |- ( ( G e. Grp /\ D e. ( Met ` X ) ) -> D e. ( Met ` X ) ) |
|
| 11 | 9 10 | biimtrdi | |- ( N : X --> RR -> ( T e. NrmGrp -> D e. ( Met ` X ) ) ) |
| 12 | 11 | com12 | |- ( T e. NrmGrp -> ( N : X --> RR -> D e. ( Met ` X ) ) ) |
| 13 | 12 | adantr | |- ( ( T e. NrmGrp /\ ( norm ` T ) = ( norm ` G ) ) -> ( N : X --> RR -> D e. ( Met ` X ) ) ) |
| 14 | 8 13 | syl | |- ( G e. NrmGrp -> ( N : X --> RR -> D e. ( Met ` X ) ) ) |
| 15 | metf | |- ( D e. ( Met ` X ) -> D : ( X X. X ) --> RR ) |
|
| 16 | 14 15 | syl6 | |- ( G e. NrmGrp -> ( N : X --> RR -> D : ( X X. X ) --> RR ) ) |
| 17 | 5 16 | mpd | |- ( G e. NrmGrp -> D : ( X X. X ) --> RR ) |