This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a norm. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | normcl.1 | |- A e. ~H |
|
| Assertion | normsqi | |- ( ( normh ` A ) ^ 2 ) = ( A .ih A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl.1 | |- A e. ~H |
|
| 2 | normval | |- ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( normh ` A ) = ( sqrt ` ( A .ih A ) ) |
| 4 | 3 | oveq1i | |- ( ( normh ` A ) ^ 2 ) = ( ( sqrt ` ( A .ih A ) ) ^ 2 ) |
| 5 | hiidge0 | |- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
|
| 6 | 1 5 | ax-mp | |- 0 <_ ( A .ih A ) |
| 7 | hiidrcl | |- ( A e. ~H -> ( A .ih A ) e. RR ) |
|
| 8 | 1 7 | ax-mp | |- ( A .ih A ) e. RR |
| 9 | 8 | sqsqrti | |- ( 0 <_ ( A .ih A ) -> ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) ) |
| 10 | 6 9 | ax-mp | |- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) |
| 11 | 4 10 | eqtri | |- ( ( normh ` A ) ^ 2 ) = ( A .ih A ) |