This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthogonality commutes. (Contributed by NM, 10-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orthcom | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( ( A .ih B ) = 0 -> ( * ` ( A .ih B ) ) = ( * ` 0 ) ) |
|
| 2 | cj0 | |- ( * ` 0 ) = 0 |
|
| 3 | 1 2 | eqtrdi | |- ( ( A .ih B ) = 0 -> ( * ` ( A .ih B ) ) = 0 ) |
| 4 | ax-his1 | |- ( ( B e. ~H /\ A e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
|
| 5 | 4 | ancoms | |- ( ( A e. ~H /\ B e. ~H ) -> ( B .ih A ) = ( * ` ( A .ih B ) ) ) |
| 6 | 5 | eqeq1d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( B .ih A ) = 0 <-> ( * ` ( A .ih B ) ) = 0 ) ) |
| 7 | 3 6 | imbitrrid | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 -> ( B .ih A ) = 0 ) ) |
| 8 | fveq2 | |- ( ( B .ih A ) = 0 -> ( * ` ( B .ih A ) ) = ( * ` 0 ) ) |
|
| 9 | 8 2 | eqtrdi | |- ( ( B .ih A ) = 0 -> ( * ` ( B .ih A ) ) = 0 ) |
| 10 | ax-his1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A .ih B ) = ( * ` ( B .ih A ) ) ) |
|
| 11 | 10 | eqeq1d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 <-> ( * ` ( B .ih A ) ) = 0 ) ) |
| 12 | 9 11 | imbitrrid | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( B .ih A ) = 0 -> ( A .ih B ) = 0 ) ) |
| 13 | 7 12 | impbid | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |