This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hi01 | |- ( A e. ~H -> ( 0h .ih A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | ax-hvmul0 | |- ( 0h e. ~H -> ( 0 .h 0h ) = 0h ) |
|
| 3 | 1 2 | ax-mp | |- ( 0 .h 0h ) = 0h |
| 4 | 3 | oveq1i | |- ( ( 0 .h 0h ) .ih A ) = ( 0h .ih A ) |
| 5 | 0cn | |- 0 e. CC |
|
| 6 | ax-his3 | |- ( ( 0 e. CC /\ 0h e. ~H /\ A e. ~H ) -> ( ( 0 .h 0h ) .ih A ) = ( 0 x. ( 0h .ih A ) ) ) |
|
| 7 | 5 1 6 | mp3an12 | |- ( A e. ~H -> ( ( 0 .h 0h ) .ih A ) = ( 0 x. ( 0h .ih A ) ) ) |
| 8 | 4 7 | eqtr3id | |- ( A e. ~H -> ( 0h .ih A ) = ( 0 x. ( 0h .ih A ) ) ) |
| 9 | hicl | |- ( ( 0h e. ~H /\ A e. ~H ) -> ( 0h .ih A ) e. CC ) |
|
| 10 | 1 9 | mpan | |- ( A e. ~H -> ( 0h .ih A ) e. CC ) |
| 11 | 10 | mul02d | |- ( A e. ~H -> ( 0 x. ( 0h .ih A ) ) = 0 ) |
| 12 | 8 11 | eqtrd | |- ( A e. ~H -> ( 0h .ih A ) = 0 ) |