This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the span of a singleton. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elspansn | |- ( A e. ~H -> ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( A = if ( A e. ~H , A , 0h ) -> { A } = { if ( A e. ~H , A , 0h ) } ) |
|
| 2 | 1 | fveq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( span ` { A } ) = ( span ` { if ( A e. ~H , A , 0h ) } ) ) |
| 3 | 2 | eleq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( B e. ( span ` { A } ) <-> B e. ( span ` { if ( A e. ~H , A , 0h ) } ) ) ) |
| 4 | oveq2 | |- ( A = if ( A e. ~H , A , 0h ) -> ( x .h A ) = ( x .h if ( A e. ~H , A , 0h ) ) ) |
|
| 5 | 4 | eqeq2d | |- ( A = if ( A e. ~H , A , 0h ) -> ( B = ( x .h A ) <-> B = ( x .h if ( A e. ~H , A , 0h ) ) ) ) |
| 6 | 5 | rexbidv | |- ( A = if ( A e. ~H , A , 0h ) -> ( E. x e. CC B = ( x .h A ) <-> E. x e. CC B = ( x .h if ( A e. ~H , A , 0h ) ) ) ) |
| 7 | 3 6 | bibi12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) ) <-> ( B e. ( span ` { if ( A e. ~H , A , 0h ) } ) <-> E. x e. CC B = ( x .h if ( A e. ~H , A , 0h ) ) ) ) ) |
| 8 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 9 | 8 | elspansni | |- ( B e. ( span ` { if ( A e. ~H , A , 0h ) } ) <-> E. x e. CC B = ( x .h if ( A e. ~H , A , 0h ) ) ) |
| 10 | 7 9 | dedth | |- ( A e. ~H -> ( B e. ( span ` { A } ) <-> E. x e. CC B = ( x .h A ) ) ) |