This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normalized vector exists in a subspace iff the subspace has a nonzero vector. (Contributed by NM, 9-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | norm1ex.1 | |- H e. SH |
|
| Assertion | norm1exi | |- ( E. x e. H x =/= 0h <-> E. y e. H ( normh ` y ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm1ex.1 | |- H e. SH |
|
| 2 | neeq1 | |- ( x = z -> ( x =/= 0h <-> z =/= 0h ) ) |
|
| 3 | 2 | cbvrexvw | |- ( E. x e. H x =/= 0h <-> E. z e. H z =/= 0h ) |
| 4 | 1 | sheli | |- ( z e. H -> z e. ~H ) |
| 5 | normcl | |- ( z e. ~H -> ( normh ` z ) e. RR ) |
|
| 6 | 4 5 | syl | |- ( z e. H -> ( normh ` z ) e. RR ) |
| 7 | 6 | adantr | |- ( ( z e. H /\ z =/= 0h ) -> ( normh ` z ) e. RR ) |
| 8 | normne0 | |- ( z e. ~H -> ( ( normh ` z ) =/= 0 <-> z =/= 0h ) ) |
|
| 9 | 4 8 | syl | |- ( z e. H -> ( ( normh ` z ) =/= 0 <-> z =/= 0h ) ) |
| 10 | 9 | biimpar | |- ( ( z e. H /\ z =/= 0h ) -> ( normh ` z ) =/= 0 ) |
| 11 | 7 10 | rereccld | |- ( ( z e. H /\ z =/= 0h ) -> ( 1 / ( normh ` z ) ) e. RR ) |
| 12 | 11 | recnd | |- ( ( z e. H /\ z =/= 0h ) -> ( 1 / ( normh ` z ) ) e. CC ) |
| 13 | simpl | |- ( ( z e. H /\ z =/= 0h ) -> z e. H ) |
|
| 14 | shmulcl | |- ( ( H e. SH /\ ( 1 / ( normh ` z ) ) e. CC /\ z e. H ) -> ( ( 1 / ( normh ` z ) ) .h z ) e. H ) |
|
| 15 | 1 14 | mp3an1 | |- ( ( ( 1 / ( normh ` z ) ) e. CC /\ z e. H ) -> ( ( 1 / ( normh ` z ) ) .h z ) e. H ) |
| 16 | 12 13 15 | syl2anc | |- ( ( z e. H /\ z =/= 0h ) -> ( ( 1 / ( normh ` z ) ) .h z ) e. H ) |
| 17 | norm1 | |- ( ( z e. ~H /\ z =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) |
|
| 18 | 4 17 | sylan | |- ( ( z e. H /\ z =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) |
| 19 | fveqeq2 | |- ( y = ( ( 1 / ( normh ` z ) ) .h z ) -> ( ( normh ` y ) = 1 <-> ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) ) |
|
| 20 | 19 | rspcev | |- ( ( ( ( 1 / ( normh ` z ) ) .h z ) e. H /\ ( normh ` ( ( 1 / ( normh ` z ) ) .h z ) ) = 1 ) -> E. y e. H ( normh ` y ) = 1 ) |
| 21 | 16 18 20 | syl2anc | |- ( ( z e. H /\ z =/= 0h ) -> E. y e. H ( normh ` y ) = 1 ) |
| 22 | 21 | rexlimiva | |- ( E. z e. H z =/= 0h -> E. y e. H ( normh ` y ) = 1 ) |
| 23 | ax-1ne0 | |- 1 =/= 0 |
|
| 24 | 23 | neii | |- -. 1 = 0 |
| 25 | eqeq1 | |- ( ( normh ` y ) = 1 -> ( ( normh ` y ) = 0 <-> 1 = 0 ) ) |
|
| 26 | 24 25 | mtbiri | |- ( ( normh ` y ) = 1 -> -. ( normh ` y ) = 0 ) |
| 27 | 1 | sheli | |- ( y e. H -> y e. ~H ) |
| 28 | norm-i | |- ( y e. ~H -> ( ( normh ` y ) = 0 <-> y = 0h ) ) |
|
| 29 | 27 28 | syl | |- ( y e. H -> ( ( normh ` y ) = 0 <-> y = 0h ) ) |
| 30 | 29 | necon3bbid | |- ( y e. H -> ( -. ( normh ` y ) = 0 <-> y =/= 0h ) ) |
| 31 | 26 30 | imbitrid | |- ( y e. H -> ( ( normh ` y ) = 1 -> y =/= 0h ) ) |
| 32 | 31 | reximia | |- ( E. y e. H ( normh ` y ) = 1 -> E. y e. H y =/= 0h ) |
| 33 | neeq1 | |- ( y = z -> ( y =/= 0h <-> z =/= 0h ) ) |
|
| 34 | 33 | cbvrexvw | |- ( E. y e. H y =/= 0h <-> E. z e. H z =/= 0h ) |
| 35 | 32 34 | sylib | |- ( E. y e. H ( normh ` y ) = 1 -> E. z e. H z =/= 0h ) |
| 36 | 22 35 | impbii | |- ( E. z e. H z =/= 0h <-> E. y e. H ( normh ` y ) = 1 ) |
| 37 | 3 36 | bitri | |- ( E. x e. H x =/= 0h <-> E. y e. H ( normh ` y ) = 1 ) |