This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ( ( H i^i F ) vH ( H i^i G ) ) = 0H but ( H i^i ( F vH G ) ) =/= 0H . The antecedent specifies that the vectors A and B are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to F , G , and H . (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nonbool.1 | |- A e. ~H |
|
| nonbool.2 | |- B e. ~H |
||
| nonbool.3 | |- F = ( span ` { A } ) |
||
| nonbool.4 | |- G = ( span ` { B } ) |
||
| nonbool.5 | |- H = ( span ` { ( A +h B ) } ) |
||
| Assertion | nonbooli | |- ( -. ( A e. G \/ B e. F ) -> ( H i^i ( F vH G ) ) =/= ( ( H i^i F ) vH ( H i^i G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nonbool.1 | |- A e. ~H |
|
| 2 | nonbool.2 | |- B e. ~H |
|
| 3 | nonbool.3 | |- F = ( span ` { A } ) |
|
| 4 | nonbool.4 | |- G = ( span ` { B } ) |
|
| 5 | nonbool.5 | |- H = ( span ` { ( A +h B ) } ) |
|
| 6 | 1 2 | hvaddcli | |- ( A +h B ) e. ~H |
| 7 | spansnid | |- ( ( A +h B ) e. ~H -> ( A +h B ) e. ( span ` { ( A +h B ) } ) ) |
|
| 8 | 6 7 | ax-mp | |- ( A +h B ) e. ( span ` { ( A +h B ) } ) |
| 9 | 8 5 | eleqtrri | |- ( A +h B ) e. H |
| 10 | 1 | spansnchi | |- ( span ` { A } ) e. CH |
| 11 | 10 | chshii | |- ( span ` { A } ) e. SH |
| 12 | 3 11 | eqeltri | |- F e. SH |
| 13 | 2 | spansnchi | |- ( span ` { B } ) e. CH |
| 14 | 13 | chshii | |- ( span ` { B } ) e. SH |
| 15 | 4 14 | eqeltri | |- G e. SH |
| 16 | 12 15 | shsleji | |- ( F +H G ) C_ ( F vH G ) |
| 17 | spansnid | |- ( A e. ~H -> A e. ( span ` { A } ) ) |
|
| 18 | 1 17 | ax-mp | |- A e. ( span ` { A } ) |
| 19 | 18 3 | eleqtrri | |- A e. F |
| 20 | spansnid | |- ( B e. ~H -> B e. ( span ` { B } ) ) |
|
| 21 | 2 20 | ax-mp | |- B e. ( span ` { B } ) |
| 22 | 21 4 | eleqtrri | |- B e. G |
| 23 | 12 15 | shsvai | |- ( ( A e. F /\ B e. G ) -> ( A +h B ) e. ( F +H G ) ) |
| 24 | 19 22 23 | mp2an | |- ( A +h B ) e. ( F +H G ) |
| 25 | 16 24 | sselii | |- ( A +h B ) e. ( F vH G ) |
| 26 | elin | |- ( ( A +h B ) e. ( H i^i ( F vH G ) ) <-> ( ( A +h B ) e. H /\ ( A +h B ) e. ( F vH G ) ) ) |
|
| 27 | 9 25 26 | mpbir2an | |- ( A +h B ) e. ( H i^i ( F vH G ) ) |
| 28 | eleq2 | |- ( ( H i^i ( F vH G ) ) = 0H -> ( ( A +h B ) e. ( H i^i ( F vH G ) ) <-> ( A +h B ) e. 0H ) ) |
|
| 29 | 27 28 | mpbii | |- ( ( H i^i ( F vH G ) ) = 0H -> ( A +h B ) e. 0H ) |
| 30 | elch0 | |- ( ( A +h B ) e. 0H <-> ( A +h B ) = 0h ) |
|
| 31 | 29 30 | sylib | |- ( ( H i^i ( F vH G ) ) = 0H -> ( A +h B ) = 0h ) |
| 32 | ch0 | |- ( ( span ` { A } ) e. CH -> 0h e. ( span ` { A } ) ) |
|
| 33 | 10 32 | ax-mp | |- 0h e. ( span ` { A } ) |
| 34 | 31 33 | eqeltrdi | |- ( ( H i^i ( F vH G ) ) = 0H -> ( A +h B ) e. ( span ` { A } ) ) |
| 35 | 3 | eleq2i | |- ( B e. F <-> B e. ( span ` { A } ) ) |
| 36 | sumspansn | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A +h B ) e. ( span ` { A } ) <-> B e. ( span ` { A } ) ) ) |
|
| 37 | 1 2 36 | mp2an | |- ( ( A +h B ) e. ( span ` { A } ) <-> B e. ( span ` { A } ) ) |
| 38 | 35 37 | bitr4i | |- ( B e. F <-> ( A +h B ) e. ( span ` { A } ) ) |
| 39 | 34 38 | sylibr | |- ( ( H i^i ( F vH G ) ) = 0H -> B e. F ) |
| 40 | 39 | con3i | |- ( -. B e. F -> -. ( H i^i ( F vH G ) ) = 0H ) |
| 41 | 40 | adantl | |- ( ( -. A e. G /\ -. B e. F ) -> -. ( H i^i ( F vH G ) ) = 0H ) |
| 42 | 5 3 | ineq12i | |- ( H i^i F ) = ( ( span ` { ( A +h B ) } ) i^i ( span ` { A } ) ) |
| 43 | 6 1 | spansnm0i | |- ( -. ( A +h B ) e. ( span ` { A } ) -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { A } ) ) = 0H ) |
| 44 | 38 43 | sylnbi | |- ( -. B e. F -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { A } ) ) = 0H ) |
| 45 | 42 44 | eqtrid | |- ( -. B e. F -> ( H i^i F ) = 0H ) |
| 46 | 5 4 | ineq12i | |- ( H i^i G ) = ( ( span ` { ( A +h B ) } ) i^i ( span ` { B } ) ) |
| 47 | sumspansn | |- ( ( B e. ~H /\ A e. ~H ) -> ( ( B +h A ) e. ( span ` { B } ) <-> A e. ( span ` { B } ) ) ) |
|
| 48 | 2 1 47 | mp2an | |- ( ( B +h A ) e. ( span ` { B } ) <-> A e. ( span ` { B } ) ) |
| 49 | 1 2 | hvcomi | |- ( A +h B ) = ( B +h A ) |
| 50 | 49 | eleq1i | |- ( ( A +h B ) e. ( span ` { B } ) <-> ( B +h A ) e. ( span ` { B } ) ) |
| 51 | 4 | eleq2i | |- ( A e. G <-> A e. ( span ` { B } ) ) |
| 52 | 48 50 51 | 3bitr4ri | |- ( A e. G <-> ( A +h B ) e. ( span ` { B } ) ) |
| 53 | 6 2 | spansnm0i | |- ( -. ( A +h B ) e. ( span ` { B } ) -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { B } ) ) = 0H ) |
| 54 | 52 53 | sylnbi | |- ( -. A e. G -> ( ( span ` { ( A +h B ) } ) i^i ( span ` { B } ) ) = 0H ) |
| 55 | 46 54 | eqtrid | |- ( -. A e. G -> ( H i^i G ) = 0H ) |
| 56 | 45 55 | oveqan12rd | |- ( ( -. A e. G /\ -. B e. F ) -> ( ( H i^i F ) vH ( H i^i G ) ) = ( 0H vH 0H ) ) |
| 57 | h0elch | |- 0H e. CH |
|
| 58 | 57 | chj0i | |- ( 0H vH 0H ) = 0H |
| 59 | 56 58 | eqtrdi | |- ( ( -. A e. G /\ -. B e. F ) -> ( ( H i^i F ) vH ( H i^i G ) ) = 0H ) |
| 60 | eqeq2 | |- ( ( ( H i^i F ) vH ( H i^i G ) ) = 0H -> ( ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) <-> ( H i^i ( F vH G ) ) = 0H ) ) |
|
| 61 | 60 | notbid | |- ( ( ( H i^i F ) vH ( H i^i G ) ) = 0H -> ( -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) <-> -. ( H i^i ( F vH G ) ) = 0H ) ) |
| 62 | 61 | biimparc | |- ( ( -. ( H i^i ( F vH G ) ) = 0H /\ ( ( H i^i F ) vH ( H i^i G ) ) = 0H ) -> -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) ) |
| 63 | 41 59 62 | syl2anc | |- ( ( -. A e. G /\ -. B e. F ) -> -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) ) |
| 64 | ioran | |- ( -. ( A e. G \/ B e. F ) <-> ( -. A e. G /\ -. B e. F ) ) |
|
| 65 | df-ne | |- ( ( H i^i ( F vH G ) ) =/= ( ( H i^i F ) vH ( H i^i G ) ) <-> -. ( H i^i ( F vH G ) ) = ( ( H i^i F ) vH ( H i^i G ) ) ) |
|
| 66 | 63 64 65 | 3imtr4i | |- ( -. ( A e. G \/ B e. F ) -> ( H i^i ( F vH G ) ) =/= ( ( H i^i F ) vH ( H i^i G ) ) ) |