This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Hilbert lattice with two or more dimensions fails the distributive law and therefore cannot be a Boolean algebra. This counterexample demonstrates a condition where ( ( H i^i F ) vH ( H i^i G ) ) = 0H but ( H i^i ( F vH G ) ) =/= 0H . The antecedent specifies that the vectors A and B are nonzero and non-colinear. The last three hypotheses assign one-dimensional subspaces to F , G , and H . (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nonbool.1 | ⊢ 𝐴 ∈ ℋ | |
| nonbool.2 | ⊢ 𝐵 ∈ ℋ | ||
| nonbool.3 | ⊢ 𝐹 = ( span ‘ { 𝐴 } ) | ||
| nonbool.4 | ⊢ 𝐺 = ( span ‘ { 𝐵 } ) | ||
| nonbool.5 | ⊢ 𝐻 = ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) | ||
| Assertion | nonbooli | ⊢ ( ¬ ( 𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹 ) → ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ≠ ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nonbool.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | nonbool.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | nonbool.3 | ⊢ 𝐹 = ( span ‘ { 𝐴 } ) | |
| 4 | nonbool.4 | ⊢ 𝐺 = ( span ‘ { 𝐵 } ) | |
| 5 | nonbool.5 | ⊢ 𝐻 = ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) | |
| 6 | 1 2 | hvaddcli | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 7 | spansnid | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) |
| 9 | 8 5 | eleqtrri | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ 𝐻 |
| 10 | 1 | spansnchi | ⊢ ( span ‘ { 𝐴 } ) ∈ Cℋ |
| 11 | 10 | chshii | ⊢ ( span ‘ { 𝐴 } ) ∈ Sℋ |
| 12 | 3 11 | eqeltri | ⊢ 𝐹 ∈ Sℋ |
| 13 | 2 | spansnchi | ⊢ ( span ‘ { 𝐵 } ) ∈ Cℋ |
| 14 | 13 | chshii | ⊢ ( span ‘ { 𝐵 } ) ∈ Sℋ |
| 15 | 4 14 | eqeltri | ⊢ 𝐺 ∈ Sℋ |
| 16 | 12 15 | shsleji | ⊢ ( 𝐹 +ℋ 𝐺 ) ⊆ ( 𝐹 ∨ℋ 𝐺 ) |
| 17 | spansnid | ⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) | |
| 18 | 1 17 | ax-mp | ⊢ 𝐴 ∈ ( span ‘ { 𝐴 } ) |
| 19 | 18 3 | eleqtrri | ⊢ 𝐴 ∈ 𝐹 |
| 20 | spansnid | ⊢ ( 𝐵 ∈ ℋ → 𝐵 ∈ ( span ‘ { 𝐵 } ) ) | |
| 21 | 2 20 | ax-mp | ⊢ 𝐵 ∈ ( span ‘ { 𝐵 } ) |
| 22 | 21 4 | eleqtrri | ⊢ 𝐵 ∈ 𝐺 |
| 23 | 12 15 | shsvai | ⊢ ( ( 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐺 ) → ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 +ℋ 𝐺 ) ) |
| 24 | 19 22 23 | mp2an | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 +ℋ 𝐺 ) |
| 25 | 16 24 | sselii | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 ∨ℋ 𝐺 ) |
| 26 | elin | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ↔ ( ( 𝐴 +ℎ 𝐵 ) ∈ 𝐻 ∧ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐹 ∨ℋ 𝐺 ) ) ) | |
| 27 | 9 25 26 | mpbir2an | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) |
| 28 | eleq2 | ⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ↔ ( 𝐴 +ℎ 𝐵 ) ∈ 0ℋ ) ) | |
| 29 | 27 28 | mpbii | ⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( 𝐴 +ℎ 𝐵 ) ∈ 0ℋ ) |
| 30 | elch0 | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ 0ℋ ↔ ( 𝐴 +ℎ 𝐵 ) = 0ℎ ) | |
| 31 | 29 30 | sylib | ⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( 𝐴 +ℎ 𝐵 ) = 0ℎ ) |
| 32 | ch0 | ⊢ ( ( span ‘ { 𝐴 } ) ∈ Cℋ → 0ℎ ∈ ( span ‘ { 𝐴 } ) ) | |
| 33 | 10 32 | ax-mp | ⊢ 0ℎ ∈ ( span ‘ { 𝐴 } ) |
| 34 | 31 33 | eqeltrdi | ⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 35 | 3 | eleq2i | ⊢ ( 𝐵 ∈ 𝐹 ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) |
| 36 | sumspansn | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) ) | |
| 37 | 1 2 36 | mp2an | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { 𝐴 } ) ) |
| 38 | 35 37 | bitr4i | ⊢ ( 𝐵 ∈ 𝐹 ↔ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 39 | 34 38 | sylibr | ⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ → 𝐵 ∈ 𝐹 ) |
| 40 | 39 | con3i | ⊢ ( ¬ 𝐵 ∈ 𝐹 → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) |
| 41 | 40 | adantl | ⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) |
| 42 | 5 3 | ineq12i | ⊢ ( 𝐻 ∩ 𝐹 ) = ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) |
| 43 | 6 1 | spansnm0i | ⊢ ( ¬ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐴 } ) → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) = 0ℋ ) |
| 44 | 38 43 | sylnbi | ⊢ ( ¬ 𝐵 ∈ 𝐹 → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐴 } ) ) = 0ℋ ) |
| 45 | 42 44 | eqtrid | ⊢ ( ¬ 𝐵 ∈ 𝐹 → ( 𝐻 ∩ 𝐹 ) = 0ℋ ) |
| 46 | 5 4 | ineq12i | ⊢ ( 𝐻 ∩ 𝐺 ) = ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) |
| 47 | sumspansn | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐵 +ℎ 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) ) | |
| 48 | 2 1 47 | mp2an | ⊢ ( ( 𝐵 +ℎ 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) |
| 49 | 1 2 | hvcomi | ⊢ ( 𝐴 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐴 ) |
| 50 | 49 | eleq1i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ↔ ( 𝐵 +ℎ 𝐴 ) ∈ ( span ‘ { 𝐵 } ) ) |
| 51 | 4 | eleq2i | ⊢ ( 𝐴 ∈ 𝐺 ↔ 𝐴 ∈ ( span ‘ { 𝐵 } ) ) |
| 52 | 48 50 51 | 3bitr4ri | ⊢ ( 𝐴 ∈ 𝐺 ↔ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) ) |
| 53 | 6 2 | spansnm0i | ⊢ ( ¬ ( 𝐴 +ℎ 𝐵 ) ∈ ( span ‘ { 𝐵 } ) → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |
| 54 | 52 53 | sylnbi | ⊢ ( ¬ 𝐴 ∈ 𝐺 → ( ( span ‘ { ( 𝐴 +ℎ 𝐵 ) } ) ∩ ( span ‘ { 𝐵 } ) ) = 0ℋ ) |
| 55 | 46 54 | eqtrid | ⊢ ( ¬ 𝐴 ∈ 𝐺 → ( 𝐻 ∩ 𝐺 ) = 0ℋ ) |
| 56 | 45 55 | oveqan12rd | ⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = ( 0ℋ ∨ℋ 0ℋ ) ) |
| 57 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 58 | 57 | chj0i | ⊢ ( 0ℋ ∨ℋ 0ℋ ) = 0ℋ |
| 59 | 56 58 | eqtrdi | ⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ ) |
| 60 | eqeq2 | ⊢ ( ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ → ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ↔ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) ) | |
| 61 | 60 | notbid | ⊢ ( ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ → ( ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ↔ ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ) ) |
| 62 | 61 | biimparc | ⊢ ( ( ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = 0ℋ ∧ ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) = 0ℋ ) → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |
| 63 | 41 59 62 | syl2anc | ⊢ ( ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) → ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |
| 64 | ioran | ⊢ ( ¬ ( 𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹 ) ↔ ( ¬ 𝐴 ∈ 𝐺 ∧ ¬ 𝐵 ∈ 𝐹 ) ) | |
| 65 | df-ne | ⊢ ( ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ≠ ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ↔ ¬ ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) = ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) | |
| 66 | 63 64 65 | 3imtr4i | ⊢ ( ¬ ( 𝐴 ∈ 𝐺 ∨ 𝐵 ∈ 𝐹 ) → ( 𝐻 ∩ ( 𝐹 ∨ℋ 𝐺 ) ) ≠ ( ( 𝐻 ∩ 𝐹 ) ∨ℋ ( 𝐻 ∩ 𝐺 ) ) ) |