This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mixed syllogism inference from a biconditional and an implication. Useful for substituting an antecedent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylnbi.1 | |- ( ph <-> ps ) |
|
| sylnbi.2 | |- ( -. ps -> ch ) |
||
| Assertion | sylnbi | |- ( -. ph -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylnbi.1 | |- ( ph <-> ps ) |
|
| 2 | sylnbi.2 | |- ( -. ps -> ch ) |
|
| 3 | 1 | notbii | |- ( -. ph <-> -. ps ) |
| 4 | 3 2 | sylbi | |- ( -. ph -> ch ) |