This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The meet of different one-dimensional subspaces is the zero subspace. (Contributed by NM, 1-Nov-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansnm0.1 | |- A e. ~H |
|
| spansnm0.2 | |- B e. ~H |
||
| Assertion | spansnm0i | |- ( -. A e. ( span ` { B } ) -> ( ( span ` { A } ) i^i ( span ` { B } ) ) = 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansnm0.1 | |- A e. ~H |
|
| 2 | spansnm0.2 | |- B e. ~H |
|
| 3 | 2 | spansnchi | |- ( span ` { B } ) e. CH |
| 4 | 3 | chshii | |- ( span ` { B } ) e. SH |
| 5 | elspansn5 | |- ( ( span ` { B } ) e. SH -> ( ( ( A e. ~H /\ -. A e. ( span ` { B } ) ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) ) |
|
| 6 | 4 5 | ax-mp | |- ( ( ( A e. ~H /\ -. A e. ( span ` { B } ) ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) |
| 7 | 1 6 | mpanl1 | |- ( ( -. A e. ( span ` { B } ) /\ ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) -> x = 0h ) |
| 8 | 7 | ex | |- ( -. A e. ( span ` { B } ) -> ( ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) -> x = 0h ) ) |
| 9 | elin | |- ( x e. ( ( span ` { A } ) i^i ( span ` { B } ) ) <-> ( x e. ( span ` { A } ) /\ x e. ( span ` { B } ) ) ) |
|
| 10 | elch0 | |- ( x e. 0H <-> x = 0h ) |
|
| 11 | 8 9 10 | 3imtr4g | |- ( -. A e. ( span ` { B } ) -> ( x e. ( ( span ` { A } ) i^i ( span ` { B } ) ) -> x e. 0H ) ) |
| 12 | 11 | ssrdv | |- ( -. A e. ( span ` { B } ) -> ( ( span ` { A } ) i^i ( span ` { B } ) ) C_ 0H ) |
| 13 | 1 | spansnchi | |- ( span ` { A } ) e. CH |
| 14 | 13 3 | chincli | |- ( ( span ` { A } ) i^i ( span ` { B } ) ) e. CH |
| 15 | 14 | chle0i | |- ( ( ( span ` { A } ) i^i ( span ` { B } ) ) C_ 0H <-> ( ( span ` { A } ) i^i ( span ` { B } ) ) = 0H ) |
| 16 | 12 15 | sylib | |- ( -. A e. ( span ` { B } ) -> ( ( span ` { A } ) i^i ( span ` { B } ) ) = 0H ) |