This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of nnadju using ax-rep . (Contributed by Paul Chapman, 11-Apr-2009) (Revised by Mario Carneiro, 6-Feb-2013) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnadjuALT | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( A +o B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon | |- ( A e. _om -> A e. On ) |
|
| 2 | nnon | |- ( B e. _om -> B e. On ) |
|
| 3 | onadju | |- ( ( A e. On /\ B e. On ) -> ( A +o B ) ~~ ( A |_| B ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) ~~ ( A |_| B ) ) |
| 5 | carden2b | |- ( ( A +o B ) ~~ ( A |_| B ) -> ( card ` ( A +o B ) ) = ( card ` ( A |_| B ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A +o B ) ) = ( card ` ( A |_| B ) ) ) |
| 7 | nnacl | |- ( ( A e. _om /\ B e. _om ) -> ( A +o B ) e. _om ) |
|
| 8 | cardnn | |- ( ( A +o B ) e. _om -> ( card ` ( A +o B ) ) = ( A +o B ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A +o B ) ) = ( A +o B ) ) |
| 10 | 6 9 | eqtr3d | |- ( ( A e. _om /\ B e. _om ) -> ( card ` ( A |_| B ) ) = ( A +o B ) ) |