This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020) (Proof shortened by AV, 2-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0o | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0o1gt2 | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |
|
| 2 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 3 | 2 | oveq1i | |- ( ( 1 - 1 ) / 2 ) = ( 0 / 2 ) |
| 4 | 2cn | |- 2 e. CC |
|
| 5 | 2ne0 | |- 2 =/= 0 |
|
| 6 | 4 5 | div0i | |- ( 0 / 2 ) = 0 |
| 7 | 3 6 | eqtri | |- ( ( 1 - 1 ) / 2 ) = 0 |
| 8 | 0nn0 | |- 0 e. NN0 |
|
| 9 | 7 8 | eqeltri | |- ( ( 1 - 1 ) / 2 ) e. NN0 |
| 10 | oveq1 | |- ( N = 1 -> ( N - 1 ) = ( 1 - 1 ) ) |
|
| 11 | 10 | oveq1d | |- ( N = 1 -> ( ( N - 1 ) / 2 ) = ( ( 1 - 1 ) / 2 ) ) |
| 12 | 11 | eleq1d | |- ( N = 1 -> ( ( ( N - 1 ) / 2 ) e. NN0 <-> ( ( 1 - 1 ) / 2 ) e. NN0 ) ) |
| 13 | 12 | adantr | |- ( ( N = 1 /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( ( N - 1 ) / 2 ) e. NN0 <-> ( ( 1 - 1 ) / 2 ) e. NN0 ) ) |
| 14 | 9 13 | mpbiri | |- ( ( N = 1 /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
| 15 | 14 | ex | |- ( N = 1 -> ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
| 16 | 2z | |- 2 e. ZZ |
|
| 17 | 16 | a1i | |- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> 2 e. ZZ ) |
| 18 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 19 | 18 | ad2antrl | |- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> N e. ZZ ) |
| 20 | 2re | |- 2 e. RR |
|
| 21 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 22 | ltle | |- ( ( 2 e. RR /\ N e. RR ) -> ( 2 < N -> 2 <_ N ) ) |
|
| 23 | 20 21 22 | sylancr | |- ( N e. NN0 -> ( 2 < N -> 2 <_ N ) ) |
| 24 | 23 | adantr | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( 2 < N -> 2 <_ N ) ) |
| 25 | 24 | impcom | |- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> 2 <_ N ) |
| 26 | eluz2 | |- ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) ) |
|
| 27 | 17 19 25 26 | syl3anbrc | |- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> N e. ( ZZ>= ` 2 ) ) |
| 28 | simprr | |- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( N + 1 ) / 2 ) e. NN0 ) |
|
| 29 | 27 28 | jca | |- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) |
| 30 | nno | |- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN ) |
|
| 31 | nnnn0 | |- ( ( ( N - 1 ) / 2 ) e. NN -> ( ( N - 1 ) / 2 ) e. NN0 ) |
|
| 32 | 29 30 31 | 3syl | |- ( ( 2 < N /\ ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
| 33 | 32 | ex | |- ( 2 < N -> ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
| 34 | 15 33 | jaoi | |- ( ( N = 1 \/ 2 < N ) -> ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
| 35 | 1 34 | mpcom | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |