This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ob | |- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0o | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN0 ) |
|
| 2 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 3 | xp1d2m1eqxm1d2 | |- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
|
| 4 | 3 | eqcomd | |- ( N e. CC -> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) |
| 5 | 2 4 | syl | |- ( N e. NN0 -> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) |
| 6 | peano2cnm | |- ( N e. CC -> ( N - 1 ) e. CC ) |
|
| 7 | 2 6 | syl | |- ( N e. NN0 -> ( N - 1 ) e. CC ) |
| 8 | 7 | halfcld | |- ( N e. NN0 -> ( ( N - 1 ) / 2 ) e. CC ) |
| 9 | 1cnd | |- ( N e. NN0 -> 1 e. CC ) |
|
| 10 | peano2nn0 | |- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
|
| 11 | 10 | nn0cnd | |- ( N e. NN0 -> ( N + 1 ) e. CC ) |
| 12 | 11 | halfcld | |- ( N e. NN0 -> ( ( N + 1 ) / 2 ) e. CC ) |
| 13 | 8 9 12 | addlsub | |- ( N e. NN0 -> ( ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) <-> ( ( N - 1 ) / 2 ) = ( ( ( N + 1 ) / 2 ) - 1 ) ) ) |
| 14 | 5 13 | mpbird | |- ( N e. NN0 -> ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) ) |
| 15 | 14 | adantr | |- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( ( N - 1 ) / 2 ) + 1 ) = ( ( N + 1 ) / 2 ) ) |
| 16 | peano2nn0 | |- ( ( ( N - 1 ) / 2 ) e. NN0 -> ( ( ( N - 1 ) / 2 ) + 1 ) e. NN0 ) |
|
| 17 | 16 | adantl | |- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( ( N - 1 ) / 2 ) + 1 ) e. NN0 ) |
| 18 | 15 17 | eqeltrrd | |- ( ( N e. NN0 /\ ( ( N - 1 ) / 2 ) e. NN0 ) -> ( ( N + 1 ) / 2 ) e. NN0 ) |
| 19 | 1 18 | impbida | |- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( ( N - 1 ) / 2 ) e. NN0 ) ) |