This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0o1gt2 | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 2 | elnnnn0c | |- ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) ) |
|
| 3 | 1red | |- ( N e. NN0 -> 1 e. RR ) |
|
| 4 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 5 | 3 4 | leloed | |- ( N e. NN0 -> ( 1 <_ N <-> ( 1 < N \/ 1 = N ) ) ) |
| 6 | 1zzd | |- ( N e. NN0 -> 1 e. ZZ ) |
|
| 7 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 8 | zltp1le | |- ( ( 1 e. ZZ /\ N e. ZZ ) -> ( 1 < N <-> ( 1 + 1 ) <_ N ) ) |
|
| 9 | 6 7 8 | syl2anc | |- ( N e. NN0 -> ( 1 < N <-> ( 1 + 1 ) <_ N ) ) |
| 10 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 11 | 10 | breq1i | |- ( ( 1 + 1 ) <_ N <-> 2 <_ N ) |
| 12 | 11 | a1i | |- ( N e. NN0 -> ( ( 1 + 1 ) <_ N <-> 2 <_ N ) ) |
| 13 | 2re | |- 2 e. RR |
|
| 14 | 13 | a1i | |- ( N e. NN0 -> 2 e. RR ) |
| 15 | 14 4 | leloed | |- ( N e. NN0 -> ( 2 <_ N <-> ( 2 < N \/ 2 = N ) ) ) |
| 16 | 9 12 15 | 3bitrd | |- ( N e. NN0 -> ( 1 < N <-> ( 2 < N \/ 2 = N ) ) ) |
| 17 | olc | |- ( 2 < N -> ( N = 1 \/ 2 < N ) ) |
|
| 18 | 17 | 2a1d | |- ( 2 < N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 19 | oveq1 | |- ( N = 2 -> ( N + 1 ) = ( 2 + 1 ) ) |
|
| 20 | 19 | oveq1d | |- ( N = 2 -> ( ( N + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 21 | 20 | eqcoms | |- ( 2 = N -> ( ( N + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 22 | 21 | adantl | |- ( ( N e. NN0 /\ 2 = N ) -> ( ( N + 1 ) / 2 ) = ( ( 2 + 1 ) / 2 ) ) |
| 23 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 24 | 23 | oveq1i | |- ( ( 2 + 1 ) / 2 ) = ( 3 / 2 ) |
| 25 | 22 24 | eqtrdi | |- ( ( N e. NN0 /\ 2 = N ) -> ( ( N + 1 ) / 2 ) = ( 3 / 2 ) ) |
| 26 | 25 | eleq1d | |- ( ( N e. NN0 /\ 2 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( 3 / 2 ) e. NN0 ) ) |
| 27 | 3halfnz | |- -. ( 3 / 2 ) e. ZZ |
|
| 28 | nn0z | |- ( ( 3 / 2 ) e. NN0 -> ( 3 / 2 ) e. ZZ ) |
|
| 29 | 28 | pm2.24d | |- ( ( 3 / 2 ) e. NN0 -> ( -. ( 3 / 2 ) e. ZZ -> ( N = 1 \/ 2 < N ) ) ) |
| 30 | 27 29 | mpi | |- ( ( 3 / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) |
| 31 | 26 30 | biimtrdi | |- ( ( N e. NN0 /\ 2 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 32 | 31 | expcom | |- ( 2 = N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 33 | 18 32 | jaoi | |- ( ( 2 < N \/ 2 = N ) -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 34 | 33 | com12 | |- ( N e. NN0 -> ( ( 2 < N \/ 2 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 35 | 16 34 | sylbid | |- ( N e. NN0 -> ( 1 < N -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 36 | 35 | com12 | |- ( 1 < N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 37 | orc | |- ( N = 1 -> ( N = 1 \/ 2 < N ) ) |
|
| 38 | 37 | eqcoms | |- ( 1 = N -> ( N = 1 \/ 2 < N ) ) |
| 39 | 38 | 2a1d | |- ( 1 = N -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 40 | 36 39 | jaoi | |- ( ( 1 < N \/ 1 = N ) -> ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 41 | 40 | com12 | |- ( N e. NN0 -> ( ( 1 < N \/ 1 = N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 42 | 5 41 | sylbid | |- ( N e. NN0 -> ( 1 <_ N -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) ) |
| 43 | 42 | imp | |- ( ( N e. NN0 /\ 1 <_ N ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 44 | 2 43 | sylbi | |- ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 45 | oveq1 | |- ( N = 0 -> ( N + 1 ) = ( 0 + 1 ) ) |
|
| 46 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 47 | 45 46 | eqtrdi | |- ( N = 0 -> ( N + 1 ) = 1 ) |
| 48 | 47 | oveq1d | |- ( N = 0 -> ( ( N + 1 ) / 2 ) = ( 1 / 2 ) ) |
| 49 | 48 | eleq1d | |- ( N = 0 -> ( ( ( N + 1 ) / 2 ) e. NN0 <-> ( 1 / 2 ) e. NN0 ) ) |
| 50 | halfnz | |- -. ( 1 / 2 ) e. ZZ |
|
| 51 | nn0z | |- ( ( 1 / 2 ) e. NN0 -> ( 1 / 2 ) e. ZZ ) |
|
| 52 | 51 | pm2.24d | |- ( ( 1 / 2 ) e. NN0 -> ( -. ( 1 / 2 ) e. ZZ -> ( N = 1 \/ 2 < N ) ) ) |
| 53 | 50 52 | mpi | |- ( ( 1 / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) |
| 54 | 49 53 | biimtrdi | |- ( N = 0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 55 | 44 54 | jaoi | |- ( ( N e. NN \/ N = 0 ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 56 | 1 55 | sylbi | |- ( N e. NN0 -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( N = 1 \/ 2 < N ) ) ) |
| 57 | 56 | imp | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |