This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nno | |- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b3 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
|
| 2 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 3 | nn0o1gt2 | |- ( ( N e. NN0 /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |
|
| 4 | 2 3 | sylan | |- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N = 1 \/ 2 < N ) ) |
| 5 | eqneqall | |- ( N = 1 -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
|
| 6 | 5 | a1d | |- ( N = 1 -> ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) ) |
| 7 | nn0z | |- ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N + 1 ) / 2 ) e. ZZ ) |
|
| 8 | peano2zm | |- ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
|
| 9 | 7 8 | syl | |- ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 10 | 9 | ad2antlr | |- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ ) |
| 11 | 2cn | |- 2 e. CC |
|
| 12 | 11 | mullidi | |- ( 1 x. 2 ) = 2 |
| 13 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 14 | 13 | ltp1d | |- ( N e. NN -> N < ( N + 1 ) ) |
| 15 | 14 | adantr | |- ( ( N e. NN /\ 2 < N ) -> N < ( N + 1 ) ) |
| 16 | 2re | |- 2 e. RR |
|
| 17 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 18 | 17 | nnred | |- ( N e. NN -> ( N + 1 ) e. RR ) |
| 19 | lttr | |- ( ( 2 e. RR /\ N e. RR /\ ( N + 1 ) e. RR ) -> ( ( 2 < N /\ N < ( N + 1 ) ) -> 2 < ( N + 1 ) ) ) |
|
| 20 | 16 13 18 19 | mp3an2i | |- ( N e. NN -> ( ( 2 < N /\ N < ( N + 1 ) ) -> 2 < ( N + 1 ) ) ) |
| 21 | 20 | expdimp | |- ( ( N e. NN /\ 2 < N ) -> ( N < ( N + 1 ) -> 2 < ( N + 1 ) ) ) |
| 22 | 15 21 | mpd | |- ( ( N e. NN /\ 2 < N ) -> 2 < ( N + 1 ) ) |
| 23 | 12 22 | eqbrtrid | |- ( ( N e. NN /\ 2 < N ) -> ( 1 x. 2 ) < ( N + 1 ) ) |
| 24 | 1red | |- ( ( N e. NN /\ 2 < N ) -> 1 e. RR ) |
|
| 25 | 18 | adantr | |- ( ( N e. NN /\ 2 < N ) -> ( N + 1 ) e. RR ) |
| 26 | 2rp | |- 2 e. RR+ |
|
| 27 | 26 | a1i | |- ( ( N e. NN /\ 2 < N ) -> 2 e. RR+ ) |
| 28 | 24 25 27 | ltmuldivd | |- ( ( N e. NN /\ 2 < N ) -> ( ( 1 x. 2 ) < ( N + 1 ) <-> 1 < ( ( N + 1 ) / 2 ) ) ) |
| 29 | 23 28 | mpbid | |- ( ( N e. NN /\ 2 < N ) -> 1 < ( ( N + 1 ) / 2 ) ) |
| 30 | 18 | rehalfcld | |- ( N e. NN -> ( ( N + 1 ) / 2 ) e. RR ) |
| 31 | 30 | adantr | |- ( ( N e. NN /\ 2 < N ) -> ( ( N + 1 ) / 2 ) e. RR ) |
| 32 | 24 31 | posdifd | |- ( ( N e. NN /\ 2 < N ) -> ( 1 < ( ( N + 1 ) / 2 ) <-> 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) ) |
| 33 | 29 32 | mpbid | |- ( ( N e. NN /\ 2 < N ) -> 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) |
| 34 | 33 | adantlr | |- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) |
| 35 | elnnz | |- ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. ZZ /\ 0 < ( ( ( N + 1 ) / 2 ) - 1 ) ) ) |
|
| 36 | 10 34 35 | sylanbrc | |- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( ( N + 1 ) / 2 ) - 1 ) e. NN ) |
| 37 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 38 | xp1d2m1eqxm1d2 | |- ( N e. CC -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
|
| 39 | 37 38 | syl | |- ( N e. NN -> ( ( ( N + 1 ) / 2 ) - 1 ) = ( ( N - 1 ) / 2 ) ) |
| 40 | 39 | eleq1d | |- ( N e. NN -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 41 | 40 | adantr | |- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 42 | 41 | adantr | |- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( ( ( N + 1 ) / 2 ) - 1 ) e. NN <-> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 43 | 36 42 | mpbid | |- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( ( N - 1 ) / 2 ) e. NN ) |
| 44 | 43 | a1d | |- ( ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) /\ 2 < N ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 45 | 44 | expcom | |- ( 2 < N -> ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) ) |
| 46 | 6 45 | jaoi | |- ( ( N = 1 \/ 2 < N ) -> ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) ) |
| 47 | 4 46 | mpcom | |- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( N =/= 1 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 48 | 47 | impancom | |- ( ( N e. NN /\ N =/= 1 ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 49 | 1 48 | sylbi | |- ( N e. ( ZZ>= ` 2 ) -> ( ( ( N + 1 ) / 2 ) e. NN0 -> ( ( N - 1 ) / 2 ) e. NN ) ) |
| 50 | 49 | imp | |- ( ( N e. ( ZZ>= ` 2 ) /\ ( ( N + 1 ) / 2 ) e. NN0 ) -> ( ( N - 1 ) / 2 ) e. NN ) |