This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020) (Proof shortened by AV, 2-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0o | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0o1gt2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( 𝑁 = 1 ∨ 2 < 𝑁 ) ) | |
| 2 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 3 | 2 | oveq1i | ⊢ ( ( 1 − 1 ) / 2 ) = ( 0 / 2 ) |
| 4 | 2cn | ⊢ 2 ∈ ℂ | |
| 5 | 2ne0 | ⊢ 2 ≠ 0 | |
| 6 | 4 5 | div0i | ⊢ ( 0 / 2 ) = 0 |
| 7 | 3 6 | eqtri | ⊢ ( ( 1 − 1 ) / 2 ) = 0 |
| 8 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 9 | 7 8 | eqeltri | ⊢ ( ( 1 − 1 ) / 2 ) ∈ ℕ0 |
| 10 | oveq1 | ⊢ ( 𝑁 = 1 → ( 𝑁 − 1 ) = ( 1 − 1 ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑁 = 1 → ( ( 𝑁 − 1 ) / 2 ) = ( ( 1 − 1 ) / 2 ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝑁 = 1 → ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ↔ ( ( 1 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑁 = 1 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ↔ ( ( 1 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 14 | 9 13 | mpbiri | ⊢ ( ( 𝑁 = 1 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) |
| 15 | 14 | ex | ⊢ ( 𝑁 = 1 → ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 16 | 2z | ⊢ 2 ∈ ℤ | |
| 17 | 16 | a1i | ⊢ ( ( 2 < 𝑁 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → 2 ∈ ℤ ) |
| 18 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 19 | 18 | ad2antrl | ⊢ ( ( 2 < 𝑁 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → 𝑁 ∈ ℤ ) |
| 20 | 2re | ⊢ 2 ∈ ℝ | |
| 21 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 22 | ltle | ⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 2 < 𝑁 → 2 ≤ 𝑁 ) ) | |
| 23 | 20 21 22 | sylancr | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 < 𝑁 → 2 ≤ 𝑁 ) ) |
| 24 | 23 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( 2 < 𝑁 → 2 ≤ 𝑁 ) ) |
| 25 | 24 | impcom | ⊢ ( ( 2 < 𝑁 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → 2 ≤ 𝑁 ) |
| 26 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) | |
| 27 | 17 19 25 26 | syl3anbrc | ⊢ ( ( 2 < 𝑁 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 2 ) ) |
| 28 | simprr | ⊢ ( ( 2 < 𝑁 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) | |
| 29 | 27 28 | jca | ⊢ ( ( 2 < 𝑁 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) |
| 30 | nno | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ ) | |
| 31 | nnnn0 | ⊢ ( ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) | |
| 32 | 29 30 31 | 3syl | ⊢ ( ( 2 < 𝑁 ∧ ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) |
| 33 | 32 | ex | ⊢ ( 2 < 𝑁 → ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 34 | 15 33 | jaoi | ⊢ ( ( 𝑁 = 1 ∨ 2 < 𝑁 ) → ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) ) |
| 35 | 1 34 | mpcom | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( ( 𝑁 + 1 ) / 2 ) ∈ ℕ0 ) → ( ( 𝑁 − 1 ) / 2 ) ∈ ℕ0 ) |